Statistical sampling and regression analysis for RT-Level power evaluation

Cheng-Ta Hsieh, Qing Wu, Chih-Shun Ding, Massoud Pedram
{"title":"Statistical sampling and regression analysis for RT-Level power evaluation","authors":"Cheng-Ta Hsieh, Qing Wu, Chih-Shun Ding, Massoud Pedram","doi":"10.1109/ICCAD.1996.569914","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a statistical power evaluation framework at the RT-level. We first discuss the power macro-modeling formulation, and then propose a simple random sampling technique to alleviate the the overhead of macro-modeling during RTL simulation. Next, we describe a regression estimator to reduce the error of the macro-modeling approach. Experimental results indicate that the execution time of the simple random sampling combined with power macro-modeling is 50 X lower than that of conventional macro-modeling while the percentage error of regression estimation combined with power macro-modeling is 16 X lower than that of conventional macro-modeling. Hence, we provide the designer with options to either improve the accuracy or the execution time when using power macro-modeling in the context of RTL simulation.","PeriodicalId":408850,"journal":{"name":"Proceedings of International Conference on Computer Aided Design","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Conference on Computer Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1996.569914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

In this paper, we propose a statistical power evaluation framework at the RT-level. We first discuss the power macro-modeling formulation, and then propose a simple random sampling technique to alleviate the the overhead of macro-modeling during RTL simulation. Next, we describe a regression estimator to reduce the error of the macro-modeling approach. Experimental results indicate that the execution time of the simple random sampling combined with power macro-modeling is 50 X lower than that of conventional macro-modeling while the percentage error of regression estimation combined with power macro-modeling is 16 X lower than that of conventional macro-modeling. Hence, we provide the designer with options to either improve the accuracy or the execution time when using power macro-modeling in the context of RTL simulation.
RT-Level功率评估的统计抽样与回归分析
在本文中,我们提出了一个在rt水平上的统计能力评估框架。我们首先讨论了功率宏建模公式,然后提出了一种简单的随机抽样技术,以减轻RTL仿真过程中宏建模的开销。接下来,我们描述了一个回归估计器,以减少宏观建模方法的误差。实验结果表明,简单随机抽样结合功率宏观建模的执行时间比常规宏观建模的执行时间低50倍,回归估计结合功率宏观建模的执行时间比常规宏观建模的执行时间低16倍。因此,我们为设计人员提供了在RTL仿真环境中使用功率宏建模时提高准确性或缩短执行时间的选项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信