Bayesian Mixture Model for Features-Preservation Clustering

Xinming Guo
{"title":"Bayesian Mixture Model for Features-Preservation Clustering","authors":"Xinming Guo","doi":"10.1109/ICCSN.2009.138","DOIUrl":null,"url":null,"abstract":"The paper introduces feature preservation clustering which can handle the problems of privacy preservation and distributed computing. First, the Bayesian Mixture Model(BMM) are stated and some terminologies are de-fined. Second, Variational approximation inference for BMM is stated in detail. Third, base on the variational approximation inference, we design a distributed and paralleled  algorithm for features preservation clustering.Finally, some datasets from UCI are chosen for experiment,Compared with K-means, the results show BMM algorithm does work better and BMM can work distributed and parallelled,so BMM can protect privacy information more and can save time.","PeriodicalId":177679,"journal":{"name":"2009 International Conference on Communication Software and Networks","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Communication Software and Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSN.2009.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper introduces feature preservation clustering which can handle the problems of privacy preservation and distributed computing. First, the Bayesian Mixture Model(BMM) are stated and some terminologies are de-fined. Second, Variational approximation inference for BMM is stated in detail. Third, base on the variational approximation inference, we design a distributed and paralleled  algorithm for features preservation clustering.Finally, some datasets from UCI are chosen for experiment,Compared with K-means, the results show BMM algorithm does work better and BMM can work distributed and parallelled,so BMM can protect privacy information more and can save time.
特征保持聚类的贝叶斯混合模型
介绍了一种能够处理隐私保护和分布式计算问题的特征保持聚类方法。首先,阐述了贝叶斯混合模型(BMM),并对相关术语进行了定义。其次,详细阐述了BMM的变分逼近推理。第三,基于变分近似推理,设计了一种分布式并行的特征保持聚类算法。最后,选择UCI数据集进行实验,与K-means算法相比,结果表明BMM算法具有更好的性能,并且BMM算法具有分布式和并行性,可以更好地保护隐私信息,节省时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信