Юрий Филиппович Долгий, Yurii Filippovich Dolgii, Р. И. Шевченко, R. Shevchenko
{"title":"Аппроксимации в задаче устойчивости линейных периодических систем с последействием","authors":"Юрий Филиппович Долгий, Yurii Filippovich Dolgii, Р. И. Шевченко, R. Shevchenko","doi":"10.36535/0233-6723-2021-191-29-37","DOIUrl":null,"url":null,"abstract":"Асимптотическая устойчивость линейной периодической системы дифференциальных уравнений с последействием определяется расположением спектра бесконечномерного вполне непрерывного оператора монодромии. Аналитическое представление такого оператора удается получить только для систем специального вида. В численных методах используются конечномерные аппроксимации оператора монодромии. В работе исследуется предложенная Н. Н. Красовским процедура аппроксимации системы дифференциальных уравнений с последействием системами обыкновенных дифференциальных уравнений большой размерности. В гильбертовом пространстве состояний периодической системы с последействием построены конечномерные аппроксимации для оператора монодромии. Доказана теорема, что при росте размерности конечномерных приближений точность аппроксимации оператора монодромии увеличивается.","PeriodicalId":283651,"journal":{"name":"Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»","volume":"158 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Итоги науки и техники. Серия «Современная математика и ее приложения. Тематические обзоры»","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36535/0233-6723-2021-191-29-37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Асимптотическая устойчивость линейной периодической системы дифференциальных уравнений с последействием определяется расположением спектра бесконечномерного вполне непрерывного оператора монодромии. Аналитическое представление такого оператора удается получить только для систем специального вида. В численных методах используются конечномерные аппроксимации оператора монодромии. В работе исследуется предложенная Н. Н. Красовским процедура аппроксимации системы дифференциальных уравнений с последействием системами обыкновенных дифференциальных уравнений большой размерности. В гильбертовом пространстве состояний периодической системы с последействием построены конечномерные аппроксимации для оператора монодромии. Доказана теорема, что при росте размерности конечномерных приближений точность аппроксимации оператора монодромии увеличивается.
线性周期微分方程的渐近稳定性是由无限连续单数运算器的位置决定的。这种操作符的分析表示只能在特定类型的系统中获得。数字方法使用单调运算符的有限近似。这项工作涉及到n . n .克拉索夫斯基提出的微分方程近似过程,以及大尺度的常微分方程后的近似过程。在吉尔伯特循环系统状态的状态空间中,有一个完整的近似为单调操作器创建。有一种定理表明,随着四肢近似的增加,单片切除术操作员近似的准确性会增加。