Visual-Inertial Indoor Navigation Systems and Algorithms for UAV Inspection Vehicles

Lorenzo Galtarossa, Luca Francesco Navilli, M. Chiaberge
{"title":"Visual-Inertial Indoor Navigation Systems and Algorithms for UAV Inspection Vehicles","authors":"Lorenzo Galtarossa, Luca Francesco Navilli, M. Chiaberge","doi":"10.5772/intechopen.90315","DOIUrl":null,"url":null,"abstract":"In UAV navigation, one of the challenges in which considerable efforts are being focused is to be able to move indoors. Completing this challenge would imply being able to respond to a series of industrial market needs such as the inspection of internal environments for safety purpose or the inventory of stored material. Usually GPS is used for navigation, but in a closed or underground environment, its signal is almost never available. As a consequence, to achieve the goal and ensure that the UAV is able to accurately estimate its position and orientation without the usage of GPS, an alternative navigation system based on visual-inertial algorithms and the SLAM will be proposed using data fusion techniques. In addition to the navigation system, we propose an obstacle avoidance method based on a Lidar sensor that allows navigation even in the absence of light.","PeriodicalId":361129,"journal":{"name":"Industrial Robotics - New Paradigms","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robotics - New Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.90315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In UAV navigation, one of the challenges in which considerable efforts are being focused is to be able to move indoors. Completing this challenge would imply being able to respond to a series of industrial market needs such as the inspection of internal environments for safety purpose or the inventory of stored material. Usually GPS is used for navigation, but in a closed or underground environment, its signal is almost never available. As a consequence, to achieve the goal and ensure that the UAV is able to accurately estimate its position and orientation without the usage of GPS, an alternative navigation system based on visual-inertial algorithms and the SLAM will be proposed using data fusion techniques. In addition to the navigation system, we propose an obstacle avoidance method based on a Lidar sensor that allows navigation even in the absence of light.
无人机巡检车的视觉惯性室内导航系统与算法
在无人机导航中,一个值得关注的挑战是能够在室内移动。完成这一挑战意味着能够对一系列工业市场需求作出反应,例如为安全目的检查内部环境或清点储存材料。GPS通常用于导航,但在封闭或地下环境中,其信号几乎不可用。因此,为了实现目标并确保无人机能够在不使用GPS的情况下准确估计其位置和方向,将使用数据融合技术提出一种基于视觉惯性算法和SLAM的替代导航系统。除了导航系统之外,我们还提出了一种基于激光雷达传感器的避障方法,即使在没有光线的情况下也可以进行导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信