Quantitative endurance failure model for filamentary RRAM

Robin Degraeve, A. Fantini, P. Roussel, L. Goux, A. Costantino, C. Y. Chen, S. Clima, B. Govoreanu, D. Linten, Aaron Thean, Malgorzata Jurczak
{"title":"Quantitative endurance failure model for filamentary RRAM","authors":"Robin Degraeve, A. Fantini, P. Roussel, L. Goux, A. Costantino, C. Y. Chen, S. Clima, B. Govoreanu, D. Linten, Aaron Thean, Malgorzata Jurczak","doi":"10.1109/VLSIT.2015.7223673","DOIUrl":null,"url":null,"abstract":"Endurance in filamentary RRAM is modeled in the framework of the hourglass model. Two failure modes are distinguished: (i) stochastic set failure is caused by defect generation near the bottom electrode, and (ii) resistive window changes are controlled by T-activated changes of the number of filament vacancies. Bottom electrode/oxide interface optimization is the prime knob for endurance improvement. This model enables quantitative and predictive endurance simulations.","PeriodicalId":181654,"journal":{"name":"2015 Symposium on VLSI Technology (VLSI Technology)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Symposium on VLSI Technology (VLSI Technology)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2015.7223673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Endurance in filamentary RRAM is modeled in the framework of the hourglass model. Two failure modes are distinguished: (i) stochastic set failure is caused by defect generation near the bottom electrode, and (ii) resistive window changes are controlled by T-activated changes of the number of filament vacancies. Bottom electrode/oxide interface optimization is the prime knob for endurance improvement. This model enables quantitative and predictive endurance simulations.
细丝RRAM的定量耐久性失效模型
在沙漏模型的框架下,对长丝RRAM的寿命进行了建模。可以区分出两种失效模式:(i)随机集失效是由底部电极附近的缺陷产生引起的,(ii)电阻窗的变化是由t激活的灯丝空位数量的变化控制的。底部电极/氧化物界面优化是提高耐久性的主要旋钮。该模型可以进行定量和预测的耐久性模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信