Automatic removal of ocular artefacts in EEG signal by using independent component analysis and Chauvenet criterion

Salim Çinar, Nurettin Acır
{"title":"Automatic removal of ocular artefacts in EEG signal by using independent component analysis and Chauvenet criterion","authors":"Salim Çinar, Nurettin Acır","doi":"10.1109/TIPTEKNO.2016.7863103","DOIUrl":null,"url":null,"abstract":"Eye movements (saccade, blink and etc.) cause artefacts in Electroencephalogram recordings. The ocular artefact can distort the EEG signals. Removal of ocular artefact is important issue in EEG signal analysis. The main task of artefact removal algorithms is to obtain cleaned EEG without losing meaningful EEG signal. The main focus of this work is to remove ocular artefact automatically by using Independent Component Analysis and Chauvenet criterion. The method is tested on real dataset. Relative error and Correlation coefficient are used for the performance test. The performance of the proposed method was Relative error= 0.273±0.148, Correlation coefficients 0.943± 0.042 in the dataset. The results show that the porposed method effectively removes ocular artefacts in EEG.","PeriodicalId":431660,"journal":{"name":"2016 Medical Technologies National Congress (TIPTEKNO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Medical Technologies National Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO.2016.7863103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Eye movements (saccade, blink and etc.) cause artefacts in Electroencephalogram recordings. The ocular artefact can distort the EEG signals. Removal of ocular artefact is important issue in EEG signal analysis. The main task of artefact removal algorithms is to obtain cleaned EEG without losing meaningful EEG signal. The main focus of this work is to remove ocular artefact automatically by using Independent Component Analysis and Chauvenet criterion. The method is tested on real dataset. Relative error and Correlation coefficient are used for the performance test. The performance of the proposed method was Relative error= 0.273±0.148, Correlation coefficients 0.943± 0.042 in the dataset. The results show that the porposed method effectively removes ocular artefacts in EEG.
基于独立分量分析和Chauvenet准则的脑电信号中眼部伪影的自动去除
眼球运动(扫视、眨眼等)在脑电图记录中引起伪影。眼伪影会对脑电信号产生畸变。眼伪影的去除是脑电信号分析中的一个重要问题。伪影去除算法的主要任务是在不丢失有意义的脑电信号的情况下获得干净的脑电信号。本文的主要工作是利用独立分量分析和Chauvenet判据自动去除眼部伪影。在实际数据集上对该方法进行了测试。使用相对误差和相关系数进行性能测试。该方法的相对误差为0.273±0.148,相关系数为0.943±0.042。结果表明,该方法能有效地去除脑电信号中的眼部伪影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信