An improvement of an adaptive weighted mean filter using fuzzy clustering

M. Muneyasu, T. Imai, T. Oda, T. Hinamoto
{"title":"An improvement of an adaptive weighted mean filter using fuzzy clustering","authors":"M. Muneyasu, T. Imai, T. Oda, T. Hinamoto","doi":"10.1109/MWSCAS.2004.1353982","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel edge-preserving adaptive weighted mean filter using fuzzy clustering. An input vector in the filter mask is classified according to predefined clusters and the membership values corresponding to all clusters are obtained. The filter output is given by the weighted sum of the membership values with the inner products of the input vector with weight vectors according to the clusters. The proposed filter can reduce mixed noises with preserving edges satisfactory, because a fuzzy clustering flexibly classifies ambiguous local image information and adaptively controls filter weights.","PeriodicalId":185817,"journal":{"name":"The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS '04.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2004.1353982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a novel edge-preserving adaptive weighted mean filter using fuzzy clustering. An input vector in the filter mask is classified according to predefined clusters and the membership values corresponding to all clusters are obtained. The filter output is given by the weighted sum of the membership values with the inner products of the input vector with weight vectors according to the clusters. The proposed filter can reduce mixed noises with preserving edges satisfactory, because a fuzzy clustering flexibly classifies ambiguous local image information and adaptively controls filter weights.
基于模糊聚类的自适应加权均值滤波器的改进
提出了一种新的基于模糊聚类的保边自适应加权均值滤波器。根据预定义的聚类对滤波掩码中的输入向量进行分类,得到所有聚类对应的隶属度值。过滤器的输出由隶属度值与输入向量与权重向量根据聚类的内积的加权和给出。由于模糊聚类能灵活地对模糊的局部图像信息进行分类,并自适应控制滤波器权值,因此该滤波器能在保持边缘满意的情况下降低混合噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信