Offline Model Guard: Secure and Private ML on Mobile Devices

Sebastian P. Bayerl, Tommaso Frassetto, Patrick Jauernig, K. Riedhammer, A. Sadeghi, T. Schneider, Emmanuel Stapf, Christian Weinert
{"title":"Offline Model Guard: Secure and Private ML on Mobile Devices","authors":"Sebastian P. Bayerl, Tommaso Frassetto, Patrick Jauernig, K. Riedhammer, A. Sadeghi, T. Schneider, Emmanuel Stapf, Christian Weinert","doi":"10.23919/DATE48585.2020.9116560","DOIUrl":null,"url":null,"abstract":"Performing machine learning tasks in mobile applications yields a challenging conflict of interest: highly sensitive client information (e.g., speech data) should remain private while also the intellectual property of service providers (e.g., model parameters) must be protected. Cryptographic techniques offer secure solutions for this, but have an unacceptable overhead and moreover require frequent network interaction.In this work, we design a practically efficient hardware-based solution. Specifically, we build OFFLINE MODEL GUARD (OMG) to enable privacy-preserving machine learning on the predominant mobile computing platform ARM—even in offline scenarios. By leveraging a trusted execution environment for strict hardware-enforced isolation from other system components, OMG guarantees privacy of client data, secrecy of provided models, and integrity of processing algorithms. Our prototype implementation on an ARM HiKey 960 development board performs privacy-preserving keyword recognition using TensorFlow Lite for Microcontrollers in real time.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

Performing machine learning tasks in mobile applications yields a challenging conflict of interest: highly sensitive client information (e.g., speech data) should remain private while also the intellectual property of service providers (e.g., model parameters) must be protected. Cryptographic techniques offer secure solutions for this, but have an unacceptable overhead and moreover require frequent network interaction.In this work, we design a practically efficient hardware-based solution. Specifically, we build OFFLINE MODEL GUARD (OMG) to enable privacy-preserving machine learning on the predominant mobile computing platform ARM—even in offline scenarios. By leveraging a trusted execution environment for strict hardware-enforced isolation from other system components, OMG guarantees privacy of client data, secrecy of provided models, and integrity of processing algorithms. Our prototype implementation on an ARM HiKey 960 development board performs privacy-preserving keyword recognition using TensorFlow Lite for Microcontrollers in real time.
离线模型保护:移动设备上的安全和私有ML
在移动应用程序中执行机器学习任务会产生一个具有挑战性的利益冲突:高度敏感的客户端信息(例如,语音数据)应该保持隐私,同时服务提供商的知识产权(例如,模型参数)也必须得到保护。加密技术为此提供了安全的解决方案,但有不可接受的开销,而且需要频繁的网络交互。在这项工作中,我们设计了一个实际高效的基于硬件的解决方案。具体来说,我们构建了离线模型保护(OMG),以便在主流移动计算平台arm上实现保护隐私的机器学习,即使在离线场景下也是如此。通过利用可信的执行环境来实现硬件强制的与其他系统组件的严格隔离,OMG保证了客户机数据的隐私性、所提供模型的保密性和处理算法的完整性。我们在ARM HiKey 960开发板上的原型实现使用微控制器的TensorFlow Lite实时执行隐私保护关键字识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信