Nanocomposite Coating for Strain Monitoring

Erika Magnafico, F. Poli, A. Casalotti, G. Lanzara
{"title":"Nanocomposite Coating for Strain Monitoring","authors":"Erika Magnafico, F. Poli, A. Casalotti, G. Lanzara","doi":"10.1115/smasis2019-5682","DOIUrl":null,"url":null,"abstract":"\n In recent years carbon nanotubes (CNTs) have been widely used for the realization of polymeric matrix nanocomposites for strain monitoring applications in civil, biomedical and aerospace engineering. In fact, by embedding CNTs in an insulated polymer matrix, it is possible to realize a conductive nanocomposite with piezoresistive behaviour which allows to monitor the occurring strains through an electrical resistance change. In this work a conductive coating made of Multi-Walled Carbon Nanotubes (MWNTs) and PolymethylMethacrilate (PMMA) is fabricated and is applied onto a fiberglass structure surface. In order to characterize the electrical behaviour of the coating and its capability to sense strain, an experimental campaign is carried out by applying a voltage to the manufactured coating. Its variations throughout the surface in the longitudinal and transverse directions are then evaluated to identify the electric field distribution and its dependence on strain.","PeriodicalId":235262,"journal":{"name":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/smasis2019-5682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years carbon nanotubes (CNTs) have been widely used for the realization of polymeric matrix nanocomposites for strain monitoring applications in civil, biomedical and aerospace engineering. In fact, by embedding CNTs in an insulated polymer matrix, it is possible to realize a conductive nanocomposite with piezoresistive behaviour which allows to monitor the occurring strains through an electrical resistance change. In this work a conductive coating made of Multi-Walled Carbon Nanotubes (MWNTs) and PolymethylMethacrilate (PMMA) is fabricated and is applied onto a fiberglass structure surface. In order to characterize the electrical behaviour of the coating and its capability to sense strain, an experimental campaign is carried out by applying a voltage to the manufactured coating. Its variations throughout the surface in the longitudinal and transverse directions are then evaluated to identify the electric field distribution and its dependence on strain.
应变监测用纳米复合涂层
近年来,碳纳米管(CNTs)被广泛用于实现聚合物基纳米复合材料在民用、生物医学和航空航天工程中的应变监测应用。事实上,通过在绝缘聚合物基体中嵌入碳纳米管,可以实现具有压阻行为的导电纳米复合材料,从而可以通过电阻变化来监测发生的应变。在这项工作中,制造了一种由多壁碳纳米管(MWNTs)和聚甲基丙烯酸甲酯(PMMA)制成的导电涂层,并将其应用于玻璃纤维结构表面。为了表征涂层的电学性能及其感应应变的能力,通过对制造的涂层施加电压来进行实验。然后评估其在纵向和横向上在整个表面上的变化,以确定电场分布及其对应变的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信