System Design of a Cold Atom Gyroscope based on Interfering Matter-wave Solitons

Y. Patil, H. Cheung, S. Bhave, M. Vengalattore
{"title":"System Design of a Cold Atom Gyroscope based on Interfering Matter-wave Solitons","authors":"Y. Patil, H. Cheung, S. Bhave, M. Vengalattore","doi":"10.1109/INERTIAL48129.2020.9090099","DOIUrl":null,"url":null,"abstract":"We propose a novel implementation of a trapped- atom Sagnac gyroscope based on the interference between matter- wave solitons confined around an optical microring resonator. Our integrated nanophotonic approach to trapped atom interferometry combines the long-term stability and quantum-limited sensitivity of ultracold matter-wave interferometers with the robustness, scalability and low power operation of nanophotonic architectures. The use of optical microresonators for atomic confinement ensures disorder-free symmetric waveguides for the confined atoms, a high degree of vibration insensitivity owing to the reciprocal structure of the waveguide, and enhanced bias and scale-factor stability via concurrent feedback stabilization of the microresonator. We have performed detailed quantum simulations based on demonstrated experimental parameters to confirm stable dispersion-free propagation of matter-wave solitons around the microresonator and the appearance of high contrast interference fringes due to the accrued Sagnac phase shift. We estimate the shot-noise limited rotation sensitivity of this gyroscope to be 0.8 μrad/s/Hz1/2 for single-loop propagation of the solitons around a microring of radius 1 mm, with the possibility of substantial improvements via multiloop propagation of the solitons, fabrication of microring resonators of larger diameter, and the use of quantum-correlated states such as spin- squeezed quantum states. The proposed device illustrates the benefits of harnessing quantum many-body states such as matter- wave solitons for quantum-enhanced inertial sensing applications.","PeriodicalId":244190,"journal":{"name":"2020 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INERTIAL48129.2020.9090099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a novel implementation of a trapped- atom Sagnac gyroscope based on the interference between matter- wave solitons confined around an optical microring resonator. Our integrated nanophotonic approach to trapped atom interferometry combines the long-term stability and quantum-limited sensitivity of ultracold matter-wave interferometers with the robustness, scalability and low power operation of nanophotonic architectures. The use of optical microresonators for atomic confinement ensures disorder-free symmetric waveguides for the confined atoms, a high degree of vibration insensitivity owing to the reciprocal structure of the waveguide, and enhanced bias and scale-factor stability via concurrent feedback stabilization of the microresonator. We have performed detailed quantum simulations based on demonstrated experimental parameters to confirm stable dispersion-free propagation of matter-wave solitons around the microresonator and the appearance of high contrast interference fringes due to the accrued Sagnac phase shift. We estimate the shot-noise limited rotation sensitivity of this gyroscope to be 0.8 μrad/s/Hz1/2 for single-loop propagation of the solitons around a microring of radius 1 mm, with the possibility of substantial improvements via multiloop propagation of the solitons, fabrication of microring resonators of larger diameter, and the use of quantum-correlated states such as spin- squeezed quantum states. The proposed device illustrates the benefits of harnessing quantum many-body states such as matter- wave solitons for quantum-enhanced inertial sensing applications.
基于干涉物质波孤子的冷原子陀螺仪系统设计
我们提出了一种基于被限制在光学微环谐振器周围的物质波孤子之间的干涉的囚禁原子Sagnac陀螺仪的新实现。我们的集成纳米光子捕获原子干涉测量方法将超冷物质波干涉仪的长期稳定性和量子限制灵敏度与纳米光子结构的鲁棒性、可扩展性和低功耗操作相结合。光学微谐振器用于原子约束确保了受约束原子的无无序对称波导,由于波导的互反结构而具有高度的振动不敏感性,并且通过微谐振器的并发反馈稳定增强了偏置和比例因子稳定性。我们基于已演示的实验参数进行了详细的量子模拟,以确认微谐振器周围物质波孤子的稳定无色散传播以及由于累积Sagnac相移而出现的高对比度干涉条纹。我们估计该陀螺仪在半径为1 mm的微环周围单环传播时的弹噪声限制旋转灵敏度为0.8 μrad/s/Hz1/2,并且通过多环传播、制造更大直径的微环谐振器以及使用量子相关态(如自旋压缩量子态)有可能大幅提高灵敏度。该装置说明了利用量子多体态(如物质波孤子)用于量子增强惯性传感应用的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信