{"title":"System Design of a Cold Atom Gyroscope based on Interfering Matter-wave Solitons","authors":"Y. Patil, H. Cheung, S. Bhave, M. Vengalattore","doi":"10.1109/INERTIAL48129.2020.9090099","DOIUrl":null,"url":null,"abstract":"We propose a novel implementation of a trapped- atom Sagnac gyroscope based on the interference between matter- wave solitons confined around an optical microring resonator. Our integrated nanophotonic approach to trapped atom interferometry combines the long-term stability and quantum-limited sensitivity of ultracold matter-wave interferometers with the robustness, scalability and low power operation of nanophotonic architectures. The use of optical microresonators for atomic confinement ensures disorder-free symmetric waveguides for the confined atoms, a high degree of vibration insensitivity owing to the reciprocal structure of the waveguide, and enhanced bias and scale-factor stability via concurrent feedback stabilization of the microresonator. We have performed detailed quantum simulations based on demonstrated experimental parameters to confirm stable dispersion-free propagation of matter-wave solitons around the microresonator and the appearance of high contrast interference fringes due to the accrued Sagnac phase shift. We estimate the shot-noise limited rotation sensitivity of this gyroscope to be 0.8 μrad/s/Hz1/2 for single-loop propagation of the solitons around a microring of radius 1 mm, with the possibility of substantial improvements via multiloop propagation of the solitons, fabrication of microring resonators of larger diameter, and the use of quantum-correlated states such as spin- squeezed quantum states. The proposed device illustrates the benefits of harnessing quantum many-body states such as matter- wave solitons for quantum-enhanced inertial sensing applications.","PeriodicalId":244190,"journal":{"name":"2020 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INERTIAL48129.2020.9090099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We propose a novel implementation of a trapped- atom Sagnac gyroscope based on the interference between matter- wave solitons confined around an optical microring resonator. Our integrated nanophotonic approach to trapped atom interferometry combines the long-term stability and quantum-limited sensitivity of ultracold matter-wave interferometers with the robustness, scalability and low power operation of nanophotonic architectures. The use of optical microresonators for atomic confinement ensures disorder-free symmetric waveguides for the confined atoms, a high degree of vibration insensitivity owing to the reciprocal structure of the waveguide, and enhanced bias and scale-factor stability via concurrent feedback stabilization of the microresonator. We have performed detailed quantum simulations based on demonstrated experimental parameters to confirm stable dispersion-free propagation of matter-wave solitons around the microresonator and the appearance of high contrast interference fringes due to the accrued Sagnac phase shift. We estimate the shot-noise limited rotation sensitivity of this gyroscope to be 0.8 μrad/s/Hz1/2 for single-loop propagation of the solitons around a microring of radius 1 mm, with the possibility of substantial improvements via multiloop propagation of the solitons, fabrication of microring resonators of larger diameter, and the use of quantum-correlated states such as spin- squeezed quantum states. The proposed device illustrates the benefits of harnessing quantum many-body states such as matter- wave solitons for quantum-enhanced inertial sensing applications.