A short term and long term learning based on Fuzzy Transaction Repository and feature re-weighting

M. Javidi, H. Pourreza, H. Yazdi, H. Foroughi
{"title":"A short term and long term learning based on Fuzzy Transaction Repository and feature re-weighting","authors":"M. Javidi, H. Pourreza, H. Yazdi, H. Foroughi","doi":"10.1109/ICCP.2008.4648360","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a combined relevance feedback approach for image retrieval using semantic similarity based on fuzzy transaction repository and feature re-weighting technique. This system accumulates user interactions using soft feedback model to construct fuzzy transaction repository (FTR). The repository remembers the userpsilas intent and therefore provides a better representation of each image in the database in terms of the semantic meanings. The semantic similarity between the query image and each database image can then be computed using the current feedbacks and the semantic values in the FTR. Furthermore, feature re-weighting is applied on the session-term feedback to learn weight of low level features. Then we use the weighted Euclidean distance metric to measure the distance between the query image and each database image. These two similarity measures are normalized and combined together to form the overall similarity measure. Our experimental results show that the average precision of the proposed system exceeds 83% after three iterations.","PeriodicalId":169031,"journal":{"name":"2008 4th International Conference on Intelligent Computer Communication and Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 4th International Conference on Intelligent Computer Communication and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2008.4648360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we introduce a combined relevance feedback approach for image retrieval using semantic similarity based on fuzzy transaction repository and feature re-weighting technique. This system accumulates user interactions using soft feedback model to construct fuzzy transaction repository (FTR). The repository remembers the userpsilas intent and therefore provides a better representation of each image in the database in terms of the semantic meanings. The semantic similarity between the query image and each database image can then be computed using the current feedbacks and the semantic values in the FTR. Furthermore, feature re-weighting is applied on the session-term feedback to learn weight of low level features. Then we use the weighted Euclidean distance metric to measure the distance between the query image and each database image. These two similarity measures are normalized and combined together to form the overall similarity measure. Our experimental results show that the average precision of the proposed system exceeds 83% after three iterations.
基于模糊事务库和特征重加权的短期学习和长期学习
本文提出了一种基于模糊事务库语义相似度和特征重加权技术的图像检索组合关联反馈方法。该系统利用软反馈模型积累用户交互,构建模糊事务库。存储库记住用户的意图,因此就语义意义而言,可以更好地表示数据库中的每个图像。然后可以使用当前反馈和FTR中的语义值计算查询图像和每个数据库图像之间的语义相似度。进一步,对会话项反馈进行特征重加权,学习低级特征的权重。然后使用加权欧氏距离度量来度量查询图像与每个数据库图像之间的距离。这两个相似度度量被归一化并组合在一起形成整体相似度度量。实验结果表明,经过三次迭代后,系统的平均精度超过83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信