LEMMING: A learning system for multi-robot environments

Takuya Ohko, K. Hiraki, Y. Anzai
{"title":"LEMMING: A learning system for multi-robot environments","authors":"Takuya Ohko, K. Hiraki, Y. Anzai","doi":"10.1109/IROS.1993.583337","DOIUrl":null,"url":null,"abstract":"Describes LEMMING, a learning system for multiple mobile robot environments. LEMMING extends the idea of the broadcast-based contract net protocol with CBR (case-based reasoning). In terms of the CBR mechanism, LEMMING can learn to select appropriate robots for a given task. Thus, LEMMING makes it possible to reduce the waste of communication resources and the trouble of processing irrelevant messages. The paper evaluates LEMMING with some experiments and shows that LEMMING can deal with task negotiation more effectively than a broadcast-based contract net system.","PeriodicalId":299306,"journal":{"name":"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1993.583337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Describes LEMMING, a learning system for multiple mobile robot environments. LEMMING extends the idea of the broadcast-based contract net protocol with CBR (case-based reasoning). In terms of the CBR mechanism, LEMMING can learn to select appropriate robots for a given task. Thus, LEMMING makes it possible to reduce the waste of communication resources and the trouble of processing irrelevant messages. The paper evaluates LEMMING with some experiments and shows that LEMMING can deal with task negotiation more effectively than a broadcast-based contract net system.
LEMMING:多机器人环境下的学习系统
描述了LEMMING,一个用于多个移动机器人环境的学习系统。LEMMING用基于案例的推理(CBR)扩展了基于广播的契约网协议的思想。在CBR机制方面,LEMMING可以学习为给定的任务选择合适的机器人。因此,LEMMING可以减少通信资源的浪费和处理无关消息的麻烦。通过实验对LEMMING算法进行了评价,结果表明LEMMING算法比基于广播的契约网系统更能有效地处理任务协商问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信