Optimised ladder-climbing rehabilitation training for various stroke severity levels in rats

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Chi-Chun Chen, Yu-Lin Wang, Ching-Ping Chang
{"title":"Optimised ladder-climbing rehabilitation training for various stroke severity levels in rats","authors":"Chi-Chun Chen,&nbsp;Yu-Lin Wang,&nbsp;Ching-Ping Chang","doi":"10.1049/cds2.12132","DOIUrl":null,"url":null,"abstract":"<p>To develop an optimised rehabilitation training system for various severity strokes in rats. The method provided feedback regarding the rat's measured position to a microprocessor, which adjusted the training speed accordingly and enables the rat to continuously exercise in the middle position of the ladder. This created a cyclic control system that provided various training intensities based on timely evaluations of the ladder-climbing capabilities of each rat, thus providing a suitable rehabilitation method for subjects with various stroke severities. The modified neurological severity score, rotarod and cerebral infarction volume results for the 60- and 90-min middle cerebral artery occlusion (MCAO) treadmill groups did not differ significantly from those of the control group. Conversely, the cerebral infarction volumes of the ladder-climbing rehabilitation groups in the 30-, 60-, and 90-min MCAO were all significantly lower than those of the control group (84.03 ± 23.24 vs. 256.77 ± 85.63 (mm<sup>3</sup>), 265.19 ± 41.12 versus 377.17 ± 90.97 (mm<sup>3</sup>), and 303.80 ± 47.15 versus 452.68 ± 90.44 (mm<sup>3</sup>) respectively), thereby indicating the optimised ladder-climbing method as effective for subjects with various stroke severities. Individual differences may cause different exercise capacities for each participant. To accommodate for these exercise capacities, an optimised ladder-climbing rehabilitation training system was proposed, which provided training according to the physical abilities of each participant.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"16 8","pages":"598-610"},"PeriodicalIF":1.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12132","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Circuits Devices & Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cds2.12132","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

To develop an optimised rehabilitation training system for various severity strokes in rats. The method provided feedback regarding the rat's measured position to a microprocessor, which adjusted the training speed accordingly and enables the rat to continuously exercise in the middle position of the ladder. This created a cyclic control system that provided various training intensities based on timely evaluations of the ladder-climbing capabilities of each rat, thus providing a suitable rehabilitation method for subjects with various stroke severities. The modified neurological severity score, rotarod and cerebral infarction volume results for the 60- and 90-min middle cerebral artery occlusion (MCAO) treadmill groups did not differ significantly from those of the control group. Conversely, the cerebral infarction volumes of the ladder-climbing rehabilitation groups in the 30-, 60-, and 90-min MCAO were all significantly lower than those of the control group (84.03 ± 23.24 vs. 256.77 ± 85.63 (mm3), 265.19 ± 41.12 versus 377.17 ± 90.97 (mm3), and 303.80 ± 47.15 versus 452.68 ± 90.44 (mm3) respectively), thereby indicating the optimised ladder-climbing method as effective for subjects with various stroke severities. Individual differences may cause different exercise capacities for each participant. To accommodate for these exercise capacities, an optimised ladder-climbing rehabilitation training system was proposed, which provided training according to the physical abilities of each participant.

Abstract Image

针对不同中风严重程度的大鼠,优化爬梯康复训练
针对不同严重程度的大鼠中风,开发一套优化的康复训练系统。该方法将测量到的大鼠位置反馈给微处理器,微处理器相应调整训练速度,使大鼠在梯子中间位置持续运动。这创造了一个循环控制系统,根据对每只大鼠爬梯能力的及时评估提供不同的训练强度,从而为不同中风严重程度的受试者提供合适的康复方法。60分钟和90分钟脑中动脉闭塞(MCAO)跑步机组的改良神经系统严重程度评分、rotarod和脑梗死体积结果与对照组无显著差异。相反,爬梯康复组在30min、60min和90min的脑梗死体积均显著低于对照组(分别为84.03±23.24 vs. 256.77±85.63 (mm3)、265.19±41.12 vs. 377.17±90.97 (mm3)、303.80±47.15 vs. 452.68±90.44 (mm3)),表明优化后的爬梯康复方法对不同脑卒中严重程度的受试者均有效。个体差异可能导致每个参与者的运动能力不同。为了适应这些运动能力,我们提出了一个优化的爬梯康复训练系统,根据每个参与者的身体能力提供训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Circuits Devices & Systems
Iet Circuits Devices & Systems 工程技术-工程:电子与电气
CiteScore
3.80
自引率
7.70%
发文量
32
审稿时长
3 months
期刊介绍: IET Circuits, Devices & Systems covers the following topics: Circuit theory and design, circuit analysis and simulation, computer aided design Filters (analogue and switched capacitor) Circuit implementations, cells and architectures for integration including VLSI Testability, fault tolerant design, minimisation of circuits and CAD for VLSI Novel or improved electronic devices for both traditional and emerging technologies including nanoelectronics and MEMs Device and process characterisation, device parameter extraction schemes Mathematics of circuits and systems theory Test and measurement techniques involving electronic circuits, circuits for industrial applications, sensors and transducers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信