Dharanidhar Dang, B. Patra, R. Mahapatra, M. Fiers
{"title":"Mode-Division-Multiplexed Photonic Router for High Performance Network-on-Chip","authors":"Dharanidhar Dang, B. Patra, R. Mahapatra, M. Fiers","doi":"10.1109/VLSID.2015.24","DOIUrl":null,"url":null,"abstract":"The communication bandwidth and power consumption of network-on-chip (NoC) are going to meet their limits soon because of traditional metallic interconnects. Photonic NoC is emerging as a promising alternative to address these bottlenecks. Photonic routers and silicon-waveguides are used to realize switching and communication respectively. In this paper, we propose a non-blocking, low power, and high performance 5×5 photonic router design using silicon microring resonators (MRR). Mode-division-multiplexing (MDM) scheme has been incorporated along with wavelength-division-multiplexing (WDM) and time-division-multiplexing (TDM) in the router to increase the aggregate bandwidth 4× times, making it a suitable candidate for high performance NoC. The technique proposed here is the first of its kind to the best of our knowledge. The MDM based design permits multi-modal (here 2 modes) communication. As compared to a high-performance 45nm electronic router, the proposed router consumes 95% less power. Further the results show 50% less power consumption and 75% less insertion loss when compared to most recently reported photonic router results.","PeriodicalId":123635,"journal":{"name":"2015 28th International Conference on VLSI Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th International Conference on VLSI Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSID.2015.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
The communication bandwidth and power consumption of network-on-chip (NoC) are going to meet their limits soon because of traditional metallic interconnects. Photonic NoC is emerging as a promising alternative to address these bottlenecks. Photonic routers and silicon-waveguides are used to realize switching and communication respectively. In this paper, we propose a non-blocking, low power, and high performance 5×5 photonic router design using silicon microring resonators (MRR). Mode-division-multiplexing (MDM) scheme has been incorporated along with wavelength-division-multiplexing (WDM) and time-division-multiplexing (TDM) in the router to increase the aggregate bandwidth 4× times, making it a suitable candidate for high performance NoC. The technique proposed here is the first of its kind to the best of our knowledge. The MDM based design permits multi-modal (here 2 modes) communication. As compared to a high-performance 45nm electronic router, the proposed router consumes 95% less power. Further the results show 50% less power consumption and 75% less insertion loss when compared to most recently reported photonic router results.