Spin-wave gap critical index for the quantum two-layer Heisenberg antiferromagnet at T e0

P. Shevchenko, O. Sushkov
{"title":"Spin-wave gap critical index for the quantum two-layer Heisenberg antiferromagnet at T e0","authors":"P. Shevchenko, O. Sushkov","doi":"10.1071/PH98099","DOIUrl":null,"url":null,"abstract":"The two-layer Heisenberg antiferromagnet exhibits a zero temperature quantum phase transition from a disordered dimer phase to a collinear Neel phase, with long range order in the ground state. The spin-wave gap vanishes as Δ ∝ (J ⊥ – J ⊥ c) n approaching the transition point. To account for strong correlations, the S = 1 elementary excitations triplets are described as a dilute Bose gas with infinite on-site repulsion. We apply the Brueckner diagram approach which gives the critical index n ≈ 0 . 5. We demonstrate also that the linearised in density Brueckner equations give the mean field result n = 1. Finally, an expansion of the Brueckner equations in powers of the density, combined with the scaling hypothesis, gives n ≈ 0 . 67. This value agrees reasonably with that of the nonlinear O(3) σ model. Our approach demonstrates that for other quantum spin models the critical index can be different from that in the nonlinear σ model. We discuss the conditions for this to occur.","PeriodicalId":170873,"journal":{"name":"Australian Journal of Physics","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/PH98099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The two-layer Heisenberg antiferromagnet exhibits a zero temperature quantum phase transition from a disordered dimer phase to a collinear Neel phase, with long range order in the ground state. The spin-wave gap vanishes as Δ ∝ (J ⊥ – J ⊥ c) n approaching the transition point. To account for strong correlations, the S = 1 elementary excitations triplets are described as a dilute Bose gas with infinite on-site repulsion. We apply the Brueckner diagram approach which gives the critical index n ≈ 0 . 5. We demonstrate also that the linearised in density Brueckner equations give the mean field result n = 1. Finally, an expansion of the Brueckner equations in powers of the density, combined with the scaling hypothesis, gives n ≈ 0 . 67. This value agrees reasonably with that of the nonlinear O(3) σ model. Our approach demonstrates that for other quantum spin models the critical index can be different from that in the nonlinear σ model. We discuss the conditions for this to occur.
量子双层Heisenberg反铁磁体的自旋波间隙临界指数
双层海森堡反铁磁体表现出从无序二聚体相到共线尼尔相的零温度量子相变,基态具有长程有序。当Δ∝(J⊥- J⊥c) n接近过渡点时,自旋波间隙消失。为了解释强相关性,S = 1基本激发三重态被描述为具有无限现场排斥的稀释玻色气体。我们采用给出临界指标n≈0的布鲁克纳图方法。5. 我们还证明了线性化的密度Brueckner方程给出了平均场结果n = 1。最后,将Brueckner方程以密度的幂展开,结合尺度假设,得到n≈0。67. 该值与非线性O(3) σ模型的值基本一致。我们的方法证明了其他量子自旋模型的临界指数可以不同于非线性σ模型。我们将讨论发生这种情况的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信