Finite Element Analysis of Printed Circuit Heat Exchanger Core for Creep and Creep-Fatigue Responses

Heramb P. Mahajan, T. Hassan
{"title":"Finite Element Analysis of Printed Circuit Heat Exchanger Core for Creep and Creep-Fatigue Responses","authors":"Heramb P. Mahajan, T. Hassan","doi":"10.1115/pvp2019-93416","DOIUrl":null,"url":null,"abstract":"\n Printed circuit heat exchangers (PCHEs) have a high heat transfer coefficient which makes them a suitable option for very high temperature reactors (VHTRs). ASME Section VIII design code provide PCHE design rules for non-nuclear applications. The PCHE design methodology for nuclear applications is yet to be established. Towards developing the ASME Section III code rules, this study started with the PCHE design as per section VIII. An experimental set up is developed to evaluate the designed PCHE for creep and creep-fatigue performances. This study performed pretest finite element analysis to estimate experimental responses and failure loads for setting up the experiments. Three dimensional isothermal analyses of the PCHE’s were conducted by using an advanced unified constitutive model to simulate the creep-fatigue interaction. The sub-modeling technique was used to analyze the channel scale response of the PCHE. Analysis results indicate that the failure may be governed by the channel corner responses, which is influenced by the creep-fatigue interaction. Analysis based creep-fatigue damage curve is plotted as per ASME code to evaluate the design of PCHEs for nuclear application.","PeriodicalId":174920,"journal":{"name":"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Printed circuit heat exchangers (PCHEs) have a high heat transfer coefficient which makes them a suitable option for very high temperature reactors (VHTRs). ASME Section VIII design code provide PCHE design rules for non-nuclear applications. The PCHE design methodology for nuclear applications is yet to be established. Towards developing the ASME Section III code rules, this study started with the PCHE design as per section VIII. An experimental set up is developed to evaluate the designed PCHE for creep and creep-fatigue performances. This study performed pretest finite element analysis to estimate experimental responses and failure loads for setting up the experiments. Three dimensional isothermal analyses of the PCHE’s were conducted by using an advanced unified constitutive model to simulate the creep-fatigue interaction. The sub-modeling technique was used to analyze the channel scale response of the PCHE. Analysis results indicate that the failure may be governed by the channel corner responses, which is influenced by the creep-fatigue interaction. Analysis based creep-fatigue damage curve is plotted as per ASME code to evaluate the design of PCHEs for nuclear application.
印制电路换热器芯蠕变及蠕变-疲劳响应的有限元分析
印刷电路热交换器(PCHEs)具有很高的传热系数,这使它们成为极高温反应器(vhtr)的合适选择。ASME第八章设计规范规定了非核应用的PCHE设计规则。核应用的PCHE设计方法尚未确定。为了制定ASME第III节的规范规则,本研究从第VIII节的PCHE设计开始。建立了一个试验装置来评估所设计的PCHE的蠕变和蠕变疲劳性能。本研究进行了预试有限元分析,以估计实验响应和失效载荷,以建立实验。采用先进的统一本构模型对PCHE进行了三维等温分析,模拟了蠕变-疲劳相互作用。采用子模型技术分析了PCHE的通道尺度响应。分析结果表明,破坏可能受通道转角响应控制,通道转角响应受蠕变-疲劳相互作用的影响。根据ASME规范绘制了基于蠕变疲劳损伤分析的曲线,对核用pchs的设计进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信