A Novel Chen Extension: Theory, Characterizations and Different Estimation Methods

H. Yousof, M. C. Korkmaz, G. Hamedani, M. Ibrahim
{"title":"A Novel Chen Extension: Theory, Characterizations and Different Estimation Methods","authors":"H. Yousof, M. C. Korkmaz, G. Hamedani, M. Ibrahim","doi":"10.28924/ada/stat.2.1","DOIUrl":null,"url":null,"abstract":"In this work, we derive a novel extension of Chen distribution. Some statistical properties of the new model are derived. Numerical analysis for mean, variance, skewness and kurtosis is presented. Some characterizations of the proposed distribution are presented. Different classical estimation methods under uncensored schemes such as the maximum likelihood, Anderson-Darling, weighted least squares and right-tail Anderson–Darling methods are considered. Simulation studies are performed in order to compare and assess the above-mentioned estimation methods. For comparing the applicability of the four classical methods, two application to real data set are analyzed.","PeriodicalId":153849,"journal":{"name":"European Journal of Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/ada/stat.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this work, we derive a novel extension of Chen distribution. Some statistical properties of the new model are derived. Numerical analysis for mean, variance, skewness and kurtosis is presented. Some characterizations of the proposed distribution are presented. Different classical estimation methods under uncensored schemes such as the maximum likelihood, Anderson-Darling, weighted least squares and right-tail Anderson–Darling methods are considered. Simulation studies are performed in order to compare and assess the above-mentioned estimation methods. For comparing the applicability of the four classical methods, two application to real data set are analyzed.
一种新的Chen可拓:理论、表征和不同的估计方法
在这项工作中,我们得到了Chen分布的一个新的扩展。给出了新模型的一些统计性质。给出了均值、方差、偏度和峰度的数值分析。提出了该分布的一些特征。在无删节格式下,考虑了极大似然、Anderson-Darling、加权最小二乘和右尾Anderson-Darling方法等经典估计方法。为了比较和评估上述估计方法,进行了仿真研究。为了比较四种经典方法的适用性,分析了两种方法在实际数据集上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信