Reducing the space complexity of a Bayes coding algorithm using an expanded context tree

T. Matsushima, S. Hirasawa
{"title":"Reducing the space complexity of a Bayes coding algorithm using an expanded context tree","authors":"T. Matsushima, S. Hirasawa","doi":"10.1109/ISIT.2009.5205677","DOIUrl":null,"url":null,"abstract":"The context tree models are widely used in a lot of research fields. Patricia[7] like trees are applied to the context trees that are expanded according to the increase of the length of a source sequence in the previous researches of non-predictive source coding and model selection. The space complexity of the Patricia like context trees are O(t) where t is the length of a source sequence. On the other hand, the predictive Bayes source coding algorithm cannot use a Patricia like context tree, because it is difficult to hold and update the posterior probability parameters on a Patricia like tree. So the space complexity of the expanded trees in the predictive Bayes coding algorithm is O(t2). In this paper, we propose an efficient predictive Bayes coding algorithm using a new representation of the posterior probability parameters and the compact context tree holding the parameters whose space complexity is O(t).","PeriodicalId":412925,"journal":{"name":"2009 IEEE International Symposium on Information Theory","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2009.5205677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The context tree models are widely used in a lot of research fields. Patricia[7] like trees are applied to the context trees that are expanded according to the increase of the length of a source sequence in the previous researches of non-predictive source coding and model selection. The space complexity of the Patricia like context trees are O(t) where t is the length of a source sequence. On the other hand, the predictive Bayes source coding algorithm cannot use a Patricia like context tree, because it is difficult to hold and update the posterior probability parameters on a Patricia like tree. So the space complexity of the expanded trees in the predictive Bayes coding algorithm is O(t2). In this paper, we propose an efficient predictive Bayes coding algorithm using a new representation of the posterior probability parameters and the compact context tree holding the parameters whose space complexity is O(t).
利用扩展上下文树降低贝叶斯编码算法的空间复杂度
上下文树模型被广泛应用于许多研究领域。在以往的非预测源编码和模型选择研究中,Patricia[7]等树被应用于根据源序列长度的增加而扩展的上下文树。类Patricia上下文树的空间复杂度为O(t),其中t是源序列的长度。另一方面,预测贝叶斯源编码算法不能使用类Patricia上下文树,因为很难保留和更新类Patricia树上的后验概率参数。因此,预测贝叶斯编码算法中展开树的空间复杂度为O(t2)。在本文中,我们提出了一种高效的预测贝叶斯编码算法,该算法使用一种新的后验概率参数表示和包含空间复杂度为O(t)的参数的紧凑上下文树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信