Gate capacitance scaling and graphene field-effect transistors with ultra-thin top-gate dielectrics

B. Fallahazad, Kayoung Lee, Seyoung Kim, C. Corbet, E. Tutuc
{"title":"Gate capacitance scaling and graphene field-effect transistors with ultra-thin top-gate dielectrics","authors":"B. Fallahazad, Kayoung Lee, Seyoung Kim, C. Corbet, E. Tutuc","doi":"10.1109/DRC.2011.5994409","DOIUrl":null,"url":null,"abstract":"Graphene has emerged recently as an attractive channel material for high frequency analog device applications. High carrier mobility and large gate capacitance are both desirable attributes for such devices. A main obstacle however in depositing thin dielectrics on graphene, with high dielectric constant is its chemical inertness. This obstacle can be overcome by either directly depositing the dielectric, e.g. using sputtering or e-beam evaporation, or by using a seed layer which provides nucleation sites for atomic layer deposition (ALD). The interfacial layer however reduces the gate capacitance and can also impact the quality of the ALD dielectric subsequently grown. Here we provide a systematic study of gate capacitance scaling of graphene field effect transistors with Al2O3 gate dielectric with two seed layers, oxidized aluminum and oxidized titanium. Our results show the oxidized Ti film on graphene provides a smooth surface, which allows us to use a Ti nucleation layer as thin as 6Å, and achieve uniform coverage required for the subsequent ALD. The k-value of the ALD Al2O3 grown on graphene using oxidized Ti as nucleation layer is 12.7, a value 2.5 times larger than the ALD Al2O3 grown using oxidized Al. We demonstrate graphene devices with ultra-thin top gate dielectrics, with EOT values as low as 3.5 nm.","PeriodicalId":107059,"journal":{"name":"69th Device Research Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"69th Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2011.5994409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Graphene has emerged recently as an attractive channel material for high frequency analog device applications. High carrier mobility and large gate capacitance are both desirable attributes for such devices. A main obstacle however in depositing thin dielectrics on graphene, with high dielectric constant is its chemical inertness. This obstacle can be overcome by either directly depositing the dielectric, e.g. using sputtering or e-beam evaporation, or by using a seed layer which provides nucleation sites for atomic layer deposition (ALD). The interfacial layer however reduces the gate capacitance and can also impact the quality of the ALD dielectric subsequently grown. Here we provide a systematic study of gate capacitance scaling of graphene field effect transistors with Al2O3 gate dielectric with two seed layers, oxidized aluminum and oxidized titanium. Our results show the oxidized Ti film on graphene provides a smooth surface, which allows us to use a Ti nucleation layer as thin as 6Å, and achieve uniform coverage required for the subsequent ALD. The k-value of the ALD Al2O3 grown on graphene using oxidized Ti as nucleation layer is 12.7, a value 2.5 times larger than the ALD Al2O3 grown using oxidized Al. We demonstrate graphene devices with ultra-thin top gate dielectrics, with EOT values as low as 3.5 nm.
门电容缩放和石墨烯场效应晶体管与超薄顶栅电介质
近年来,石墨烯已成为高频模拟器件应用中具有吸引力的通道材料。高载流子迁移率和大栅极电容都是这种器件的理想属性。然而,在具有高介电常数的石墨烯上沉积薄介电体的主要障碍是其化学惰性。这一障碍可以通过直接沉积电介质来克服,例如使用溅射或电子束蒸发,或者通过使用为原子层沉积(ALD)提供成核位置的种子层。然而,界面层降低了栅极电容,也会影响ALD电介质随后生长的质量。本文系统地研究了氧化铝和氧化钛两种种子层Al2O3栅极介质的石墨烯场效应晶体管的栅极电容缩放问题。我们的研究结果表明,氧化的钛膜在石墨烯上提供了一个光滑的表面,这使得我们可以使用薄如6Å的钛成核层,并达到后续ALD所需的均匀覆盖。使用氧化Ti作为成核层在石墨烯上生长的ALD Al2O3的k值为12.7,是使用氧化Al生长的ALD Al2O3的2.5倍。我们展示了具有超薄顶栅电介质的石墨烯器件,EOT值低至3.5 nm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信