Partitioned algorithms and VLSI structures for large-scale matrix computations

K. Hwang, Yeng-Heng Cheng
{"title":"Partitioned algorithms and VLSI structures for large-scale matrix computations","authors":"K. Hwang, Yeng-Heng Cheng","doi":"10.1109/ARITH.1981.6159276","DOIUrl":null,"url":null,"abstract":"VLSI modular arithmetic structures and new partitioned matrix algorithms are developed in this paper to perform hardware matrix computations in solving large-scale linear system of equations. Gaussian elimination and inversion of triangular matrices are shown systematically partitionable. All the partitioned algorithms being developed can achieve linear computation time 0(n), where n is the order of the linear system. The partitioned matrix computations are feasible for modular VLSI implementation with constrained I/O terminals. Performance analysis and design tradeoffs of the partitioned VLSI arithmetic structures are also provided.","PeriodicalId":169426,"journal":{"name":"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1981.6159276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

VLSI modular arithmetic structures and new partitioned matrix algorithms are developed in this paper to perform hardware matrix computations in solving large-scale linear system of equations. Gaussian elimination and inversion of triangular matrices are shown systematically partitionable. All the partitioned algorithms being developed can achieve linear computation time 0(n), where n is the order of the linear system. The partitioned matrix computations are feasible for modular VLSI implementation with constrained I/O terminals. Performance analysis and design tradeoffs of the partitioned VLSI arithmetic structures are also provided.
大规模矩阵计算的划分算法和VLSI结构
本文提出了VLSI模块化算法结构和新的分块矩阵算法,用于求解大规模线性方程组的硬件矩阵计算。证明了三角矩阵的高斯消去和反演是系统可分的。所有正在开发的分区算法都可以实现线性计算时间为0(n),其中n为线性系统的阶数。划分矩阵计算对于具有受限I/O终端的模块化VLSI实现是可行的。本文还对划分的VLSI算法结构进行了性能分析和设计权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信