{"title":"Partitioned algorithms and VLSI structures for large-scale matrix computations","authors":"K. Hwang, Yeng-Heng Cheng","doi":"10.1109/ARITH.1981.6159276","DOIUrl":null,"url":null,"abstract":"VLSI modular arithmetic structures and new partitioned matrix algorithms are developed in this paper to perform hardware matrix computations in solving large-scale linear system of equations. Gaussian elimination and inversion of triangular matrices are shown systematically partitionable. All the partitioned algorithms being developed can achieve linear computation time 0(n), where n is the order of the linear system. The partitioned matrix computations are feasible for modular VLSI implementation with constrained I/O terminals. Performance analysis and design tradeoffs of the partitioned VLSI arithmetic structures are also provided.","PeriodicalId":169426,"journal":{"name":"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1981 IEEE 5th Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1981.6159276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
VLSI modular arithmetic structures and new partitioned matrix algorithms are developed in this paper to perform hardware matrix computations in solving large-scale linear system of equations. Gaussian elimination and inversion of triangular matrices are shown systematically partitionable. All the partitioned algorithms being developed can achieve linear computation time 0(n), where n is the order of the linear system. The partitioned matrix computations are feasible for modular VLSI implementation with constrained I/O terminals. Performance analysis and design tradeoffs of the partitioned VLSI arithmetic structures are also provided.