{"title":"Transfer-free, wafer-scale fabrication of graphene-based nanoelectromechanical resonators","authors":"M. Cullinan, J. Gorman","doi":"10.1109/MAMNA.2013.6557225","DOIUrl":null,"url":null,"abstract":"This paper presents a method for fabricating graphene-based nanoelectromechanical resonators at the wafer-scale using techniques that are compatibles with conventional MEMS manufacturing. In this method, graphene is grown directly on copper thin films using chemical vapor deposition. The graphene is then patterned and the copper is etched to create suspended graphene structures. This transfer-free fabrication method allows for precise fabrication of graphene resonators with localized back gates to minimize parasitic capacitances. This method also increase manufacturing flexability by allowing many different types of graphene devices to be fabricated on a single wafer.","PeriodicalId":369463,"journal":{"name":"2013 Microsystems for Measurement and Instrumentation: Fulfilling the Promise (MAMNA)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Microsystems for Measurement and Instrumentation: Fulfilling the Promise (MAMNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MAMNA.2013.6557225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper presents a method for fabricating graphene-based nanoelectromechanical resonators at the wafer-scale using techniques that are compatibles with conventional MEMS manufacturing. In this method, graphene is grown directly on copper thin films using chemical vapor deposition. The graphene is then patterned and the copper is etched to create suspended graphene structures. This transfer-free fabrication method allows for precise fabrication of graphene resonators with localized back gates to minimize parasitic capacitances. This method also increase manufacturing flexability by allowing many different types of graphene devices to be fabricated on a single wafer.