Logistic regression modeling for context-based classification

J. Brzezinski, G. Knafl
{"title":"Logistic regression modeling for context-based classification","authors":"J. Brzezinski, G. Knafl","doi":"10.1109/DEXA.1999.795279","DOIUrl":null,"url":null,"abstract":"We focus on a machine learning approach to the concept/document classification for IR. We apply a logistic regression-based algorithm to three types of classification tasks: binary classification, multiple classification and classification into a hierarchy. At this stage, for our experiments we use a set of 150 topics from the TIPSTER collection. We develop heuristics as to how to build a logistic regression model for high dimensional, sparse data sets. This research describes work in progress.","PeriodicalId":276867,"journal":{"name":"Proceedings. Tenth International Workshop on Database and Expert Systems Applications. DEXA 99","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Tenth International Workshop on Database and Expert Systems Applications. DEXA 99","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.1999.795279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

We focus on a machine learning approach to the concept/document classification for IR. We apply a logistic regression-based algorithm to three types of classification tasks: binary classification, multiple classification and classification into a hierarchy. At this stage, for our experiments we use a set of 150 topics from the TIPSTER collection. We develop heuristics as to how to build a logistic regression model for high dimensional, sparse data sets. This research describes work in progress.
基于上下文分类的逻辑回归建模
我们专注于IR概念/文档分类的机器学习方法。我们将基于逻辑回归的算法应用于三种类型的分类任务:二元分类、多重分类和分层分类。在这个阶段,对于我们的实验,我们使用来自TIPSTER集合的一组150个主题。我们开发了启发式方法来建立高维稀疏数据集的逻辑回归模型。这项研究描述了正在进行的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信