Zhenyu Wang, A. Castellazzi, Sarah Saeed, Ángel Navarro-Rodríguez, P. García
{"title":"Impact of SiC technology in a three-port active bridge converter for energy storage integrated solid state transformer applications","authors":"Zhenyu Wang, A. Castellazzi, Sarah Saeed, Ángel Navarro-Rodríguez, P. García","doi":"10.1109/WIPDA.2016.7799914","DOIUrl":null,"url":null,"abstract":"Silicon Carbide (SiC) MOSFET power module has become commercially available in the past few years, and it is attractive in solid state transformers (SSTs) applications to replace Silicon (Si)-based IGBTs. This paper is focused on the efficiency comparison between a SiC MOSFET-based three-port active bridge converter (TAB) and a Si IGBT-based approach. The efficiency of the overall system, being one of its ports connected to the energy storage element (Lithium-Ion battery), is tested and analyzed. By swapping the switching frequency of the device, a significant efficiency improvement can be observed by SiC power devices. Experimental results indicated that an efficiency increment of around 2% can be brought by SiC MOSFET. Moreover, the battery losses can be reduced by a maximum of 8% with the increased switching frequency.","PeriodicalId":431347,"journal":{"name":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIPDA.2016.7799914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Silicon Carbide (SiC) MOSFET power module has become commercially available in the past few years, and it is attractive in solid state transformers (SSTs) applications to replace Silicon (Si)-based IGBTs. This paper is focused on the efficiency comparison between a SiC MOSFET-based three-port active bridge converter (TAB) and a Si IGBT-based approach. The efficiency of the overall system, being one of its ports connected to the energy storage element (Lithium-Ion battery), is tested and analyzed. By swapping the switching frequency of the device, a significant efficiency improvement can be observed by SiC power devices. Experimental results indicated that an efficiency increment of around 2% can be brought by SiC MOSFET. Moreover, the battery losses can be reduced by a maximum of 8% with the increased switching frequency.