Adaptive backstepping hierarchical sliding mode control for uncertain 3D overhead crane systems

H. Xuan, Thai Nguyen Van, Anh Le Viet, N. Thuy, M. Xuan
{"title":"Adaptive backstepping hierarchical sliding mode control for uncertain 3D overhead crane systems","authors":"H. Xuan, Thai Nguyen Van, Anh Le Viet, N. Thuy, M. Xuan","doi":"10.1109/ICSSE.2017.8030913","DOIUrl":null,"url":null,"abstract":"This paper presents an adaptive backstepping hierarchical sliding mode control algorithm for uncertain 3D overhead crane model. Backstepping sliding mode is constructed based on hierarchical structure to guarantee tracking for trolley and anti-swing for load. Neural network is adopted to approximate the uncertain terms. The disadvantage of sliding mode control is fixed by changing signum function to saturation function. The purposes of this paper are to use RBF neural network to approximate nonlinear function of crane, design hierarchical sliding mode controller based on Lyapunov theory.","PeriodicalId":296191,"journal":{"name":"2017 International Conference on System Science and Engineering (ICSSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE.2017.8030913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This paper presents an adaptive backstepping hierarchical sliding mode control algorithm for uncertain 3D overhead crane model. Backstepping sliding mode is constructed based on hierarchical structure to guarantee tracking for trolley and anti-swing for load. Neural network is adopted to approximate the uncertain terms. The disadvantage of sliding mode control is fixed by changing signum function to saturation function. The purposes of this paper are to use RBF neural network to approximate nonlinear function of crane, design hierarchical sliding mode controller based on Lyapunov theory.
不确定三维桥式起重机系统的自适应反演分层滑模控制
针对不确定三维桥式起重机模型,提出了一种自适应反步分层滑模控制算法。基于层次结构构造了反步滑模,保证了小车的跟踪性和负载的抗摇摆性。采用神经网络对不确定项进行逼近。通过将sgn函数改为饱和函数,解决了滑模控制的缺点。本文的目的是利用RBF神经网络逼近起重机的非线性函数,设计基于李雅普诺夫理论的分层滑模控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信