Advanced Memory Efficient Outlier Detection Approach for Streaming Data using Swarm Optimization

Ankita Karale, Milena Lazarova, P. Koleva, V. Poulkov
{"title":"Advanced Memory Efficient Outlier Detection Approach for Streaming Data using Swarm Optimization","authors":"Ankita Karale, Milena Lazarova, P. Koleva, V. Poulkov","doi":"10.1109/TSP52935.2021.9522667","DOIUrl":null,"url":null,"abstract":"Outlier detection techniques detect abnormal behavior in data and are useful in a variety of applications. In a real-life scenario, various applications generate large-scale data every day. Outlier detection over such continuous/streaming data is a challenging task due to its volume and limitations in processing memory. This paper presents an outlier detection approach called Advanced Memory Efficient Outlier Detection (A-MEOD) that is able to find outliers in streaming data in a memory-efficient manner. The outlier detection is based on the MEOD technique and Local Correlation Integral (LOCI) algorithm. Further the A-MEOD technique reduces the LOCI calculations and finds the top M outliers using Knorr’s definition. The results of utilization of A-MEOD are compared with MiLOF and MEOD in terms of accuracy, time, and memory requirements.","PeriodicalId":243595,"journal":{"name":"2021 44th International Conference on Telecommunications and Signal Processing (TSP)","volume":"137 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 44th International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP52935.2021.9522667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Outlier detection techniques detect abnormal behavior in data and are useful in a variety of applications. In a real-life scenario, various applications generate large-scale data every day. Outlier detection over such continuous/streaming data is a challenging task due to its volume and limitations in processing memory. This paper presents an outlier detection approach called Advanced Memory Efficient Outlier Detection (A-MEOD) that is able to find outliers in streaming data in a memory-efficient manner. The outlier detection is based on the MEOD technique and Local Correlation Integral (LOCI) algorithm. Further the A-MEOD technique reduces the LOCI calculations and finds the top M outliers using Knorr’s definition. The results of utilization of A-MEOD are compared with MiLOF and MEOD in terms of accuracy, time, and memory requirements.
基于群优化的流数据高级内存高效离群点检测方法
异常值检测技术检测数据中的异常行为,在各种应用中都很有用。在现实场景中,各种应用程序每天都会生成大量数据。由于这种连续/流数据的体积和处理内存的限制,异常值检测是一项具有挑战性的任务。本文提出了一种异常点检测方法,称为高级内存高效异常点检测(a - meod),它能够以内存高效的方式发现流数据中的异常点。异常点检测基于局部相关积分(LOCI)算法。此外,a - method技术减少了LOCI计算,并使用Knorr的定义找到了前M个异常值。利用A-MEOD的结果与MiLOF和MEOD在精度、时间和内存要求方面进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信