M. W. Feil, Katja Waschneck, H. Reisinger, J. Berens, T. Aichinger, P. Salmen, G. Rescher, W. Gustin, T. Grasser
{"title":"Towards Understanding the Physics of Gate Switching Instability in Silicon Carbide MOSFETs","authors":"M. W. Feil, Katja Waschneck, H. Reisinger, J. Berens, T. Aichinger, P. Salmen, G. Rescher, W. Gustin, T. Grasser","doi":"10.1109/IRPS48203.2023.10117740","DOIUrl":null,"url":null,"abstract":"Bias temperature instability (BTI) is a well-investigated degradation mechanism in technologies based on silicon, gallium nitride, or silicon carbide (SiC). Essentially, it leads to a drift in the threshold voltage and to a reduction in mobility after application of a gate bias, and becomes worse at elevated temperatures. However, as discovered recently, the threshold voltage drift of SiC metal-oxide-semiconductor field-effect transistors (MOSFETs) has different properties than those known from BTI when the gate terminal of the device is switched in a bipolar mode. This new degradation mechanism has recently been termed gate switching instability (GSI). To further understand this degradation mechanism and the underlying physics, we have used pre- and post-stress impedance characterization and in-situ ultra-fast threshold voltage measurements. Most importantly, we show that the gate switching leads to the creation of fast, acceptor-like interface defects that lead to a shift in threshold voltage, and hence appear to be responsible for GSI.","PeriodicalId":159030,"journal":{"name":"2023 IEEE International Reliability Physics Symposium (IRPS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS48203.2023.10117740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Bias temperature instability (BTI) is a well-investigated degradation mechanism in technologies based on silicon, gallium nitride, or silicon carbide (SiC). Essentially, it leads to a drift in the threshold voltage and to a reduction in mobility after application of a gate bias, and becomes worse at elevated temperatures. However, as discovered recently, the threshold voltage drift of SiC metal-oxide-semiconductor field-effect transistors (MOSFETs) has different properties than those known from BTI when the gate terminal of the device is switched in a bipolar mode. This new degradation mechanism has recently been termed gate switching instability (GSI). To further understand this degradation mechanism and the underlying physics, we have used pre- and post-stress impedance characterization and in-situ ultra-fast threshold voltage measurements. Most importantly, we show that the gate switching leads to the creation of fast, acceptor-like interface defects that lead to a shift in threshold voltage, and hence appear to be responsible for GSI.