{"title":"MicroRNAs in Bone Diseases: Progress and Prospects","authors":"H. Loh, Yuin-Yee Lau, K. Lai, M. Osman","doi":"10.5772/INTECHOPEN.79275","DOIUrl":null,"url":null,"abstract":"With 19–25 nucleotides long, microRNAs (miRNAs) are small noncoding RNA molecules which play crucial roles in major cellular functions such as cell cycle control, apoptosis, metabolism, cell proliferation, and cell differentiation. Changes in the expression of miRNAs can cause significant effects to normal and aberrant cells. The dysregulation of miRNAs has been implicated in various human diseases such as brain tumor, osteo- arthritis, schizophrenia, and breast cancer. Generally, miRNAs negatively regulate gene expression by binding to their specific mRNAs, thereby blocking their translation of the mRNAs. However, a few studies have reported that miRNAs could also upregulate the translation of certain proteins. This shows the important roles of miRNAs in various cell functions. This chapter will focus on the role of miRNAs in normal osteoblast and osteo sarcoma cells. In addition, the great potential of miRNA as a new therapeutic approach to treat human bone diseases will also be discussed. serum miRNA expression profile in peripheral blood mononuclear cells (PBMCs) from 20 PDB patients. The results showed that 22 miRNAs were significantly upregulated with a fold change above three (miR-31, miR-32, miR-124a, miR-132, miR-182, miR-221, miR-339, miR-345, miR-410, miR-451, miR-485.3p) or between 2 and 3 (miR-19a, miR-30b, miR-30c, miR-27a, miR-125a, miR-146a, miR-148a, miR-200c, miR-223, miR-301, miR-365) when compared to non pagetic controls. Among the 22 miRNAs, these 14 miRNAs (miR-19a, miR-miR-27a, miR-30c, miR-32, miR-125a, miR-132, miR-200c, miR-221, miR-223, miR-301, miR-345, miR-365, miR-410, and miR-485-3p) showed significantly higher expression in patients that experienced Q16STM1 mutation [ 58 ].","PeriodicalId":289207,"journal":{"name":"Transcriptional and Post-transcriptional Regulation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transcriptional and Post-transcriptional Regulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.79275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
With 19–25 nucleotides long, microRNAs (miRNAs) are small noncoding RNA molecules which play crucial roles in major cellular functions such as cell cycle control, apoptosis, metabolism, cell proliferation, and cell differentiation. Changes in the expression of miRNAs can cause significant effects to normal and aberrant cells. The dysregulation of miRNAs has been implicated in various human diseases such as brain tumor, osteo- arthritis, schizophrenia, and breast cancer. Generally, miRNAs negatively regulate gene expression by binding to their specific mRNAs, thereby blocking their translation of the mRNAs. However, a few studies have reported that miRNAs could also upregulate the translation of certain proteins. This shows the important roles of miRNAs in various cell functions. This chapter will focus on the role of miRNAs in normal osteoblast and osteo sarcoma cells. In addition, the great potential of miRNA as a new therapeutic approach to treat human bone diseases will also be discussed. serum miRNA expression profile in peripheral blood mononuclear cells (PBMCs) from 20 PDB patients. The results showed that 22 miRNAs were significantly upregulated with a fold change above three (miR-31, miR-32, miR-124a, miR-132, miR-182, miR-221, miR-339, miR-345, miR-410, miR-451, miR-485.3p) or between 2 and 3 (miR-19a, miR-30b, miR-30c, miR-27a, miR-125a, miR-146a, miR-148a, miR-200c, miR-223, miR-301, miR-365) when compared to non pagetic controls. Among the 22 miRNAs, these 14 miRNAs (miR-19a, miR-miR-27a, miR-30c, miR-32, miR-125a, miR-132, miR-200c, miR-221, miR-223, miR-301, miR-345, miR-365, miR-410, and miR-485-3p) showed significantly higher expression in patients that experienced Q16STM1 mutation [ 58 ].