Triangular function based analysis and solution of inverted pendulum problem

B. Moulika, R. Chowdhuryb, Anindita Gangulyb, Himadri Basuc, C.K. Ramanb
{"title":"Triangular function based analysis and solution of inverted pendulum problem","authors":"B. Moulika, R. Chowdhuryb, Anindita Gangulyb, Himadri Basuc, C.K. Ramanb","doi":"10.1109/RDCAPE.2017.8358262","DOIUrl":null,"url":null,"abstract":"Differential equations of different types and orders are of utmost importance for mathematical modeling of control system problems. State variable method uses the concept of expressing a number of first order differential equations in vector matrix form to model and analyze/synthesize control systems. The present work takes into account the Analysis and Solution of Homogeneous and Non-homogeneous (Time invariant) Differential State Equations and solving inverted pendulum problem with this approach.","PeriodicalId":442235,"journal":{"name":"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RDCAPE.2017.8358262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Differential equations of different types and orders are of utmost importance for mathematical modeling of control system problems. State variable method uses the concept of expressing a number of first order differential equations in vector matrix form to model and analyze/synthesize control systems. The present work takes into account the Analysis and Solution of Homogeneous and Non-homogeneous (Time invariant) Differential State Equations and solving inverted pendulum problem with this approach.
基于三角函数的倒立摆问题分析与求解
不同类型和阶次的微分方程对于控制系统问题的数学建模至关重要。状态变量法是将若干一阶微分方程表示为向量矩阵形式的概念,对控制系统进行建模和分析/综合。本文研究了齐次和非齐次(时不变)微分状态方程的分析与求解,并利用该方法求解倒立摆问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信