Fine Grained Group Gesture Detection Using Smartwatches

Yongjian Zhao, Stephen New, Kanchana Thilakarathna, Xiaodong Zhang, Qi Han
{"title":"Fine Grained Group Gesture Detection Using Smartwatches","authors":"Yongjian Zhao, Stephen New, Kanchana Thilakarathna, Xiaodong Zhang, Qi Han","doi":"10.1109/MDM.2019.00113","DOIUrl":null,"url":null,"abstract":"People may perform synchronized activities in a group setting. It is helpful to provide notifications to users and also the group leader whether people are in sync. This work aims to provide this support via analyzing motion data collected from wearable devices. We collected experimental data from smart watches worn by people, applied signal processing algorithms in both time and frequency domains for identification of the fine-grained group gesture status. We further developed a prototype system consisting of a smart watch, a smartphone, and a server. Our simulation results and actual system implementation demonstrate the feasibility of our approaches.","PeriodicalId":241426,"journal":{"name":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2019.00113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

People may perform synchronized activities in a group setting. It is helpful to provide notifications to users and also the group leader whether people are in sync. This work aims to provide this support via analyzing motion data collected from wearable devices. We collected experimental data from smart watches worn by people, applied signal processing algorithms in both time and frequency domains for identification of the fine-grained group gesture status. We further developed a prototype system consisting of a smart watch, a smartphone, and a server. Our simulation results and actual system implementation demonstrate the feasibility of our approaches.
使用智能手表的细粒度组手势检测
人们可以在一个群体中进行同步活动。向用户和组长提供通知是很有帮助的,人们是否在同步。这项工作旨在通过分析从可穿戴设备收集的运动数据来提供这种支持。我们收集了人们佩戴的智能手表的实验数据,应用时域和频域的信号处理算法来识别细粒度的群体手势状态。我们进一步开发了一个由智能手表、智能手机和服务器组成的原型系统。仿真结果和实际系统实现验证了所提方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信