Hanbin Ying, Sunil G. Rao, Jeffrey W. Teng, Milad Frounchi, Markus Müller, Xiaodi Jin, M. Schröter, J. Cressler
{"title":"Compact Modeling of SiGe HBTs for Design of Cryogenic Control and Readout Circuits for Quantum Computing","authors":"Hanbin Ying, Sunil G. Rao, Jeffrey W. Teng, Milad Frounchi, Markus Müller, Xiaodi Jin, M. Schröter, J. Cressler","doi":"10.1109/BCICTS48439.2020.9392937","DOIUrl":null,"url":null,"abstract":"A HICUM/L0 compact model is extracted for advanced SiGe HBTs operating at 12 K, targeting potential use for control and readout applications in quantum computing. Due to the presence of transistor non-idealities, extraction procedures are modified from room temperature approaches. The resultant compact model shows good accuracy in both small-signal and large-signal prediction when compared to 12 K measurements for a wideband cryogenic low noise amplifier. Important factors for model accuracy are investigated through sensitivity analysis. This is the first demonstration of a DC, small-signal, and large-signal compact model for SiGe HBTs operating at deep cryogenic temperatures.","PeriodicalId":355401,"journal":{"name":"2020 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCICTS48439.2020.9392937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A HICUM/L0 compact model is extracted for advanced SiGe HBTs operating at 12 K, targeting potential use for control and readout applications in quantum computing. Due to the presence of transistor non-idealities, extraction procedures are modified from room temperature approaches. The resultant compact model shows good accuracy in both small-signal and large-signal prediction when compared to 12 K measurements for a wideband cryogenic low noise amplifier. Important factors for model accuracy are investigated through sensitivity analysis. This is the first demonstration of a DC, small-signal, and large-signal compact model for SiGe HBTs operating at deep cryogenic temperatures.