Nayeli Joaquinita Meléndez Acosta, Ricardo Solano Monje, Cosijopii García García, H. V. Ríos Figueroa
{"title":"Ca-PSO: Coulomb atrayendo un Cúmulo de Partículas","authors":"Nayeli Joaquinita Meléndez Acosta, Ricardo Solano Monje, Cosijopii García García, H. V. Ríos Figueroa","doi":"10.30973/progmat/2019.11.3/1","DOIUrl":null,"url":null,"abstract":"Este artículo presenta una variante del algoritmo C-PSO, al cual hemos llamado Ca-PSO, a diferencia de C-PSO que considera como cargas puntuales a lBesti y gBest, Ca-PSO considera a la partícula xi y gBest. Al mismo tiempo se presenta una comparación de cuatro algoritmos: el algoritmo original PSO (Particle Swarm Optimization), PSO con “restricción” (Constriction PSO), C-PSO una versión que hace uso de ley de Coulomb y el algoritmo propuesto Ca-PSO. También se muestra el movimiento esquemático de una partícula en el algoritmo Ca-PSO. Los resultados que se muestran corresponden a la media de 50 corridas, cada algoritmo habiendo sido ejecutado 10000 iteraciones por función para 50 y 100 dimensiones. El algoritmo Ca-PSO mostró un rendimiento superior respecto a CPSO en seis de las diez funciones de prueba, además se muestra que tanto C-PSO como CaPSO presentan un mejor rendimiento que el algoritmo original de PSO y PSO con restricción.","PeriodicalId":417893,"journal":{"name":"Programación Matemática y Software","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programación Matemática y Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30973/progmat/2019.11.3/1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Este artículo presenta una variante del algoritmo C-PSO, al cual hemos llamado Ca-PSO, a diferencia de C-PSO que considera como cargas puntuales a lBesti y gBest, Ca-PSO considera a la partícula xi y gBest. Al mismo tiempo se presenta una comparación de cuatro algoritmos: el algoritmo original PSO (Particle Swarm Optimization), PSO con “restricción” (Constriction PSO), C-PSO una versión que hace uso de ley de Coulomb y el algoritmo propuesto Ca-PSO. También se muestra el movimiento esquemático de una partícula en el algoritmo Ca-PSO. Los resultados que se muestran corresponden a la media de 50 corridas, cada algoritmo habiendo sido ejecutado 10000 iteraciones por función para 50 y 100 dimensiones. El algoritmo Ca-PSO mostró un rendimiento superior respecto a CPSO en seis de las diez funciones de prueba, además se muestra que tanto C-PSO como CaPSO presentan un mejor rendimiento que el algoritmo original de PSO y PSO con restricción.