Backhopping-based STT-MRAM Poisson Spiking Neuron for Neuromorphic Computation

J. Tan, J. H. Lim, J. Kwon, V. B. Naik, N. Raghavan, K. Pey
{"title":"Backhopping-based STT-MRAM Poisson Spiking Neuron for Neuromorphic Computation","authors":"J. Tan, J. H. Lim, J. Kwon, V. B. Naik, N. Raghavan, K. Pey","doi":"10.1109/IRPS48203.2023.10118343","DOIUrl":null,"url":null,"abstract":"Spin-transfer-torque magnetic random-access memory (STT-MRAM) is a proven technology for embedded non-volatile memory applications. The backhopping phenomena in STT-MRAM, whereby the resistance of the device oscillates under higher current, has been recently explored for emerging spiking neural network applications. We report a detailed characterization of backhopping in foundry compatible STT-MRAM having ~15kb bit-cell arrays by analyzing the behavior of backhopping spike rate versus applied current and temperature. Our study shows that the backhopping in STT-MRAM exhibits the Poisson statistics with a controllable spike rate with current that displays three regimes: non-backhopping, exponential and linear. This mimics the behavior of a rectified linear unit (ReLU) neuron, a commonly used activation function in deep learning models. A spiking neural network (SNN) communication channel is simulated using the derived statistics and a first principles mathematical framework to analyze the reliability performance of backhopping-based SNN in terms of trading-off the accuracy and applied current.","PeriodicalId":159030,"journal":{"name":"2023 IEEE International Reliability Physics Symposium (IRPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Reliability Physics Symposium (IRPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRPS48203.2023.10118343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spin-transfer-torque magnetic random-access memory (STT-MRAM) is a proven technology for embedded non-volatile memory applications. The backhopping phenomena in STT-MRAM, whereby the resistance of the device oscillates under higher current, has been recently explored for emerging spiking neural network applications. We report a detailed characterization of backhopping in foundry compatible STT-MRAM having ~15kb bit-cell arrays by analyzing the behavior of backhopping spike rate versus applied current and temperature. Our study shows that the backhopping in STT-MRAM exhibits the Poisson statistics with a controllable spike rate with current that displays three regimes: non-backhopping, exponential and linear. This mimics the behavior of a rectified linear unit (ReLU) neuron, a commonly used activation function in deep learning models. A spiking neural network (SNN) communication channel is simulated using the derived statistics and a first principles mathematical framework to analyze the reliability performance of backhopping-based SNN in terms of trading-off the accuracy and applied current.
基于后跳的STT-MRAM泊松峰值神经元神经形态计算
自旋-转矩磁随机存取存储器(STT-MRAM)是一种成熟的嵌入式非易失性存储器应用技术。STT-MRAM中的回跳现象,即器件的电阻在较大电流下振荡,最近已被用于新兴的尖峰神经网络应用。我们通过分析反向跳峰速率随施加电流和温度的变化,详细描述了具有~15kb位元阵列的铸造厂兼容STT-MRAM的反向跳特性。我们的研究表明,STT-MRAM的回跳表现出具有可控尖峰率的泊松统计量,具有三种状态:非回跳、指数和线性。这模仿了一个整流线性单元(ReLU)神经元的行为,这是深度学习模型中常用的激活函数。利用导出的统计量和第一性原理数学框架对一个尖峰神经网络(SNN)通信信道进行了仿真,从精度和应用电流的权衡角度分析了基于后跳的SNN的可靠性性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信