Myoelectric Algorithm for Knee Angle Estimation Using Proprioceptive Data and a Compatibility Test

A. Delis, J.L. Azevedo de Carvalho, A. Ferreira da Rocha, F.A. de_Oliveira Nascimento, G. Borges, A.F. Ruiz Olaya
{"title":"Myoelectric Algorithm for Knee Angle Estimation Using Proprioceptive Data and a Compatibility Test","authors":"A. Delis, J.L. Azevedo de Carvalho, A. Ferreira da Rocha, F.A. de_Oliveira Nascimento, G. Borges, A.F. Ruiz Olaya","doi":"10.1109/ANDESCON.2012.48","DOIUrl":null,"url":null,"abstract":"This article presents a method to estimate the knee angle based on data fusion for transfemoral leg prostheses control, using information from two electromyographic signals, two gyroscope sensors and one electrogoniometer channel. This information is processed in three stages: feature extraction using cepstral coefficients and the myoelectric signal entropy, pattern classification using a perceptron neural network and data fusion from a Kalman filter. A compatibility test is introduced based on Mahalanobis distance with the aim to detect possible artifacts to come from the estimated angle at the neural network output. The method was tested in healthy subjects, and the results were compared with another work that was based solely on myoelectric signals. The results showed that the use of additional information related to proprioception improves the precision of the knee joint angle estimation, and reduces artifacts.","PeriodicalId":274362,"journal":{"name":"2012 VI Andean Region International Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 VI Andean Region International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANDESCON.2012.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This article presents a method to estimate the knee angle based on data fusion for transfemoral leg prostheses control, using information from two electromyographic signals, two gyroscope sensors and one electrogoniometer channel. This information is processed in three stages: feature extraction using cepstral coefficients and the myoelectric signal entropy, pattern classification using a perceptron neural network and data fusion from a Kalman filter. A compatibility test is introduced based on Mahalanobis distance with the aim to detect possible artifacts to come from the estimated angle at the neural network output. The method was tested in healthy subjects, and the results were compared with another work that was based solely on myoelectric signals. The results showed that the use of additional information related to proprioception improves the precision of the knee joint angle estimation, and reduces artifacts.
利用本体感觉数据估计膝关节角度的肌电算法及相容性测试
本文提出了一种利用两个肌电信号、两个陀螺仪传感器和一个测角仪通道的数据融合估计膝关节角度的方法。该信息的处理分为三个阶段:使用倒谱系数和肌电信号熵进行特征提取,使用感知器神经网络进行模式分类,以及使用卡尔曼滤波器进行数据融合。引入了一种基于马氏距离的兼容性测试,目的是检测神经网络输出估计角度可能产生的伪影。该方法在健康受试者中进行了测试,并将结果与另一项仅基于肌电信号的工作进行了比较。结果表明,利用本体感觉相关的附加信息提高了膝关节角度估计的精度,并减少了伪影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信