Sentiment analysis using Support Vector Machine

Nurulhuda Zainuddin, A. Selamat
{"title":"Sentiment analysis using Support Vector Machine","authors":"Nurulhuda Zainuddin, A. Selamat","doi":"10.1109/I4CT.2014.6914200","DOIUrl":null,"url":null,"abstract":"Sentiment analysis is treated as a classification task as it classifies the orientation of a text into either positive or negative. This paper describes experimental results that applied Support Vector Machine (SVM) on benchmark datasets to train a sentiment classifier. N-grams and different weighting scheme were used to extract the most classical features. It also explores Chi-Square weight features to select informative features for the classification. Experimental analysis reveals that by using Chi-Square feature selection may provide significant improvement on classification accuracy.","PeriodicalId":356190,"journal":{"name":"2014 International Conference on Computer, Communications, and Control Technology (I4CT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"160","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Computer, Communications, and Control Technology (I4CT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I4CT.2014.6914200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 160

Abstract

Sentiment analysis is treated as a classification task as it classifies the orientation of a text into either positive or negative. This paper describes experimental results that applied Support Vector Machine (SVM) on benchmark datasets to train a sentiment classifier. N-grams and different weighting scheme were used to extract the most classical features. It also explores Chi-Square weight features to select informative features for the classification. Experimental analysis reveals that by using Chi-Square feature selection may provide significant improvement on classification accuracy.
基于支持向量机的情感分析
情感分析被视为一种分类任务,因为它将文本的方向分为积极或消极。本文描述了在基准数据集上应用支持向量机(SVM)训练情感分类器的实验结果。采用N-grams和不同的加权方案提取最经典的特征。它还探索卡方权重特征,以选择用于分类的信息特征。实验分析表明,使用卡方特征选择可以显著提高分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信