Human Activity Recognition Based on 3D Mesh MoSIFT Feature Descriptor

Yue Ming
{"title":"Human Activity Recognition Based on 3D Mesh MoSIFT Feature Descriptor","authors":"Yue Ming","doi":"10.1109/SocialCom.2013.151","DOIUrl":null,"url":null,"abstract":"The times of Big Data promotes increasingly higher demands for information processing. The rapid development of 3D digital capturing devices prompts the traditional behavior analysis towards fine motion recognition, such as hands and gesture. In this paper, a complete framework of 3D human activity recognition is presented for the behavior analysis of hands and gesture. First, the improved graph cuts method is introduced to hand segmentation and tracking. Then, combined with 3D geometric characteristics and human behavior prior information, 3D Mesh MoSIFT feature descriptor is proposed to represent the discriminant property of human activity. Simulation orthogonal matching pursuit (SOMP) is used to encode the visual code words. Experiments, based on a RGB-D video dataset and ChaLearn gesture dataset, show the improved accuracy of human activity recognition.","PeriodicalId":129308,"journal":{"name":"2013 International Conference on Social Computing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SocialCom.2013.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The times of Big Data promotes increasingly higher demands for information processing. The rapid development of 3D digital capturing devices prompts the traditional behavior analysis towards fine motion recognition, such as hands and gesture. In this paper, a complete framework of 3D human activity recognition is presented for the behavior analysis of hands and gesture. First, the improved graph cuts method is introduced to hand segmentation and tracking. Then, combined with 3D geometric characteristics and human behavior prior information, 3D Mesh MoSIFT feature descriptor is proposed to represent the discriminant property of human activity. Simulation orthogonal matching pursuit (SOMP) is used to encode the visual code words. Experiments, based on a RGB-D video dataset and ChaLearn gesture dataset, show the improved accuracy of human activity recognition.
基于三维网格MoSIFT特征描述符的人体活动识别
大数据时代对信息处理提出了越来越高的要求。三维数字捕捉设备的快速发展促使传统的行为分析转向精细动作识别,如手部和手势。本文提出了一个完整的三维人体活动识别框架,用于手部和手势的行为分析。首先,将改进的图割方法引入到手部分割和跟踪中。然后,结合三维几何特征和人类行为先验信息,提出三维网格MoSIFT特征描述符来表示人类活动的判别性。采用仿真正交匹配追踪(SOMP)对视觉码字进行编码。基于RGB-D视频数据集和ChaLearn手势数据集的实验表明,该方法提高了人体活动识别的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信