Indoor Localization with Fingerprint Feature Extraction

Hanas Subakti, Hui-Sung Liang, Jehn-Ruey Jiang
{"title":"Indoor Localization with Fingerprint Feature Extraction","authors":"Hanas Subakti, Hui-Sung Liang, Jehn-Ruey Jiang","doi":"10.1109/ECICE50847.2020.9301994","DOIUrl":null,"url":null,"abstract":"We propose an indoor localization method using FPFE (Fingerprint Feature Extraction) with Bluetooth Low Energy (BLE) beacon fingerprints. FPFE apples either AE or PCA to extract features of beacon fingerprints and then measures the similarity between the features using the concept of the Minkowski distance. FPFE selects k RPs with the k smallest Minkowski distances for estimating the position of the target device. Experiments are conducted to evaluate the localization error of FPFE. The experimental results show that the FPFE achieves an average error of 0.68 m which is better than those of other related BLE fingerprint-based localization methods.","PeriodicalId":130143,"journal":{"name":"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECICE50847.2020.9301994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose an indoor localization method using FPFE (Fingerprint Feature Extraction) with Bluetooth Low Energy (BLE) beacon fingerprints. FPFE apples either AE or PCA to extract features of beacon fingerprints and then measures the similarity between the features using the concept of the Minkowski distance. FPFE selects k RPs with the k smallest Minkowski distances for estimating the position of the target device. Experiments are conducted to evaluate the localization error of FPFE. The experimental results show that the FPFE achieves an average error of 0.68 m which is better than those of other related BLE fingerprint-based localization methods.
基于指纹特征提取的室内定位
提出了一种基于低功耗蓝牙信标指纹的室内定位方法。FPFE采用AE或PCA提取信标指纹的特征,然后利用闵可夫斯基距离的概念度量特征之间的相似性。FPFE选择k个最小闵可夫斯基距离的rp来估计目标器件的位置。通过实验对FPFE的定位误差进行了评估。实验结果表明,FPFE的平均误差为0.68 m,优于其他相关的基于BLE指纹的定位方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信