Development of Vehicle Detection Method on Water Surface Using LiDAR Data for Situation Awareness

Eon-ho Lee, Hyeonmyeong Jeon, Jinwoo Choi, Hyun-Taek Choi, Sejin Lee
{"title":"Development of Vehicle Detection Method on Water Surface Using LiDAR Data for Situation Awareness","authors":"Eon-ho Lee, Hyeonmyeong Jeon, Jinwoo Choi, Hyun-Taek Choi, Sejin Lee","doi":"10.1109/ur55393.2022.9826242","DOIUrl":null,"url":null,"abstract":"In order to operate unmanned autonomous surface vehicle, it is necessary to strongly detect water obstacles. Among the sensors for this purpose, LiDAR sensor is the most intuitive at close range and can detect obstacles strongly regardless of surrounding environmental conditions. In order to detect obstacles with 3D LiDAR sensor data, clustering of point clouds for each object is first required. These clustered point groups are used to classify the types of objects. In this study, a convolutional neural network is used to classify the types of objects. Since 3D point cloud data cannot be directly entered into this network, we propose the descriptor that can express the representative characteristics of the clustered point cloud. Using this descriptor, 3D point cloud data can be converted into a 2D image, and the converted 2D image is provided as an input value of the network. Using the experimental results on the simulator, we intend to verify the validity of the use of the point cloud feature descriptor proposed in this study.","PeriodicalId":398742,"journal":{"name":"2022 19th International Conference on Ubiquitous Robots (UR)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ur55393.2022.9826242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to operate unmanned autonomous surface vehicle, it is necessary to strongly detect water obstacles. Among the sensors for this purpose, LiDAR sensor is the most intuitive at close range and can detect obstacles strongly regardless of surrounding environmental conditions. In order to detect obstacles with 3D LiDAR sensor data, clustering of point clouds for each object is first required. These clustered point groups are used to classify the types of objects. In this study, a convolutional neural network is used to classify the types of objects. Since 3D point cloud data cannot be directly entered into this network, we propose the descriptor that can express the representative characteristics of the clustered point cloud. Using this descriptor, 3D point cloud data can be converted into a 2D image, and the converted 2D image is provided as an input value of the network. Using the experimental results on the simulator, we intend to verify the validity of the use of the point cloud feature descriptor proposed in this study.
基于态势感知的激光雷达水面车辆探测方法研究
为了使无人驾驶自主水面车辆正常运行,必须对水中障碍物进行强检测。在这类传感器中,LiDAR传感器在近距离上最直观,无论周围环境条件如何,它都能强烈地探测到障碍物。为了利用三维激光雷达传感器数据检测障碍物,首先需要对每个物体的点云进行聚类。这些聚类点组用于对对象的类型进行分类。在本研究中,使用卷积神经网络对物体类型进行分类。由于三维点云数据不能直接输入到该网络中,我们提出了能够表达聚类点云的代表性特征的描述符。利用该描述符,可以将三维点云数据转换为二维图像,并将转换后的二维图像作为网络的输入值提供。利用模拟器上的实验结果,我们打算验证本研究中提出的点云特征描述符使用的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信