Анатолий Константинович Гущин, Anatolii Konstantinovich Gushchin
{"title":"О граничных значениях решений эллиптического уравнения","authors":"Анатолий Константинович Гущин, Anatolii Konstantinovich Gushchin","doi":"10.4213/sm9274","DOIUrl":null,"url":null,"abstract":"Работа посвящена исследованию граничного поведения решений эллиптического уравнения второго порядка. При тех же условиях на коэффициенты уравнения, при которых доказана однозначная разрешимость задачи Дирихле с граничной функцией из $L_p$, $p>1$, установлены критерии существования граничного значения решения однородного уравнения. В частности, доказан аналог известной теоремы Ф. Рисса (о граничных значениях аналитической функции): если семейство норм в пространстве $L_p$ следов решения на \"параллельных\" границе поверхностях ограничено, то данное семейство следов сходится в $L_p$. Это означает, что рассматриваемое решение уравнения является решением задачи Дирихле с некоторым граничным значением из $L_p$. Для такого решения справедливы оценки некасательной максимальной функции и аналога интеграла площадей Лузина, которые позволяют утверждать, что граничное значение принимается в существенно более сильном смысле.\nБиблиография: 57 названий.","PeriodicalId":273677,"journal":{"name":"Математический сборник","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Математический сборник","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4213/sm9274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Работа посвящена исследованию граничного поведения решений эллиптического уравнения второго порядка. При тех же условиях на коэффициенты уравнения, при которых доказана однозначная разрешимость задачи Дирихле с граничной функцией из $L_p$, $p>1$, установлены критерии существования граничного значения решения однородного уравнения. В частности, доказан аналог известной теоремы Ф. Рисса (о граничных значениях аналитической функции): если семейство норм в пространстве $L_p$ следов решения на "параллельных" границе поверхностях ограничено, то данное семейство следов сходится в $L_p$. Это означает, что рассматриваемое решение уравнения является решением задачи Дирихле с некоторым граничным значением из $L_p$. Для такого решения справедливы оценки некасательной максимальной функции и аналога интеграла площадей Лузина, которые позволяют утверждать, что граничное значение принимается в существенно более сильном смысле.
Библиография: 57 названий.