{"title":"DSP design using VLIW architecture","authors":"L. Lee, B.S. Suparjo, R. Wagiran, R. Sidek","doi":"10.1109/SMELEC.2000.932456","DOIUrl":null,"url":null,"abstract":"Programmable digital signal processors (pDSPs) are microprocessors that are specialized to perform well in digital signal processing intensive applications. A standard microprocessor can do most pDSP operations. However, the pDSP chip has better ability to perform number crunching algorithms in real-time, and pDSPs are highly flexible because they can be reprogrammed. The major objective of this research is to design and implement a general-purpose programmable DSP core (digital signal processor core). The architecture of the pDSP core must be designed in such a way that parallel processing can be exploited and computational units can be integrated into the core with ease. The pDSP designed is a fixed-point DSP based on a very long instruction word (VLIW) architecture. One way to overcome the performance limitation is to use field programmable gate array (FPGA) technology, a technology which gives the designer a higher degree of parallelism and ease of pDSP design.","PeriodicalId":359114,"journal":{"name":"ICSE 2000. 2000 IEEE International Conference on Semiconductor Electronics. Proceedings (Cat. No.00EX425)","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICSE 2000. 2000 IEEE International Conference on Semiconductor Electronics. Proceedings (Cat. No.00EX425)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2000.932456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Programmable digital signal processors (pDSPs) are microprocessors that are specialized to perform well in digital signal processing intensive applications. A standard microprocessor can do most pDSP operations. However, the pDSP chip has better ability to perform number crunching algorithms in real-time, and pDSPs are highly flexible because they can be reprogrammed. The major objective of this research is to design and implement a general-purpose programmable DSP core (digital signal processor core). The architecture of the pDSP core must be designed in such a way that parallel processing can be exploited and computational units can be integrated into the core with ease. The pDSP designed is a fixed-point DSP based on a very long instruction word (VLIW) architecture. One way to overcome the performance limitation is to use field programmable gate array (FPGA) technology, a technology which gives the designer a higher degree of parallelism and ease of pDSP design.