Market Efficiency in the Age of Machine Learning

Leonidas G. Barbopoulos, Rui Dai, Tālis J. Putniņš, A. Saunders
{"title":"Market Efficiency in the Age of Machine Learning","authors":"Leonidas G. Barbopoulos, Rui Dai, Tālis J. Putniņš, A. Saunders","doi":"10.2139/ssrn.3783221","DOIUrl":null,"url":null,"abstract":"As machines replace humans in financial markets, how is informational efficiency impacted? We shed light on this issue by exploiting unique data that allow us to identify when machines access company information (8-K filings) versus when humans access the same information. We find that increased access by machines, particularly from cloud computing services, significantly improves informational efficiency, by reducing the price drift following information events. We address identification through a quasi-natural experiment, instrumental variables, and exogenous power outages. We show that machines are better able to handle linguistically complex filings and are less susceptible to bias from negative sentiment, whereas humans are better at combining incremental information.","PeriodicalId":124312,"journal":{"name":"New York University Stern School of Business Research Paper Series","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New York University Stern School of Business Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3783221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As machines replace humans in financial markets, how is informational efficiency impacted? We shed light on this issue by exploiting unique data that allow us to identify when machines access company information (8-K filings) versus when humans access the same information. We find that increased access by machines, particularly from cloud computing services, significantly improves informational efficiency, by reducing the price drift following information events. We address identification through a quasi-natural experiment, instrumental variables, and exogenous power outages. We show that machines are better able to handle linguistically complex filings and are less susceptible to bias from negative sentiment, whereas humans are better at combining incremental information.
随着机器在金融市场取代人类,信息效率将受到怎样的影响?我们通过利用独特的数据来阐明这个问题,这些数据使我们能够识别机器何时访问公司信息(8-K文件),以及人类何时访问相同的信息。我们发现,通过减少信息事件后的价格漂移,机器访问的增加,特别是云计算服务,显著提高了信息效率。我们通过准自然实验、工具变量和外源性停电来解决识别问题。我们表明,机器能够更好地处理语言复杂的文件,并且不太容易受到负面情绪的影响,而人类则更擅长组合增量信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信