Machine learning aided cognitive RAT selection for 5G heterogeneous networks

Juan S. Perez, S. Jayaweera, S. Lane
{"title":"Machine learning aided cognitive RAT selection for 5G heterogeneous networks","authors":"Juan S. Perez, S. Jayaweera, S. Lane","doi":"10.1109/BlackSeaCom.2017.8277675","DOIUrl":null,"url":null,"abstract":"The starring role of the Heterogeneous Networks (HetNet) strategy as the key Radio Access Network (RAN) architecture for future 5G networks poses serious challenges to the current user association (cell selection) mechanisms used in cellular networks. The max-SINR algorithm, although historically effective for performing this function, is inefficient at best and obsolete at worst in 5G HetNets. The foreseen embarrassment of riches and diversified propagation characteristics of network attachment points spanning multiple Radio Access Technologies (RAT) requires novel and creative context-aware system designs that optimize the association and routing decisions in the context of single-RAT and multi-RAT connections, respectively. This paper proposes a framework under these guidelines that relies on Machine Learning techniques at the terminal device level for Cognitive RAT Selection and presents simulation results to suppport it.","PeriodicalId":126747,"journal":{"name":"2017 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BlackSeaCom.2017.8277675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

The starring role of the Heterogeneous Networks (HetNet) strategy as the key Radio Access Network (RAN) architecture for future 5G networks poses serious challenges to the current user association (cell selection) mechanisms used in cellular networks. The max-SINR algorithm, although historically effective for performing this function, is inefficient at best and obsolete at worst in 5G HetNets. The foreseen embarrassment of riches and diversified propagation characteristics of network attachment points spanning multiple Radio Access Technologies (RAT) requires novel and creative context-aware system designs that optimize the association and routing decisions in the context of single-RAT and multi-RAT connections, respectively. This paper proposes a framework under these guidelines that relies on Machine Learning techniques at the terminal device level for Cognitive RAT Selection and presents simulation results to suppport it.
机器学习辅助5G异构网络认知RAT选择
异构网络(HetNet)战略作为未来5G网络的关键无线接入网(RAN)架构的主要作用,对蜂窝网络中使用的当前用户关联(小区选择)机制提出了严峻挑战。max-SINR算法虽然在历史上对执行此功能有效,但在5G HetNets中效率低下,最坏的情况下已经过时。跨越多种无线接入技术(RAT)的网络附着点的可预见的丰富尴尬和多样化传播特性,需要新颖和创造性的环境感知系统设计,分别优化单RAT和多RAT连接环境下的关联和路由决策。本文在这些指导原则下提出了一个框架,该框架依赖于终端设备级别的机器学习技术进行认知鼠选择,并给出了仿真结果来支持它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信