An ant optimization method for path planning on a cuboid

Huali Xu, Shoubao Su, Yang Yang
{"title":"An ant optimization method for path planning on a cuboid","authors":"Huali Xu, Shoubao Su, Yang Yang","doi":"10.1109/PACCS.2010.5626607","DOIUrl":null,"url":null,"abstract":"Path planning on the surfaces of a cuboid is widespread in engineering applications. It has been employed in many areas, such as network routing, the emergency rescuing upon high-rise buildings, wall-climbing robots picking and placing on a box-shaped objects, a large scale cleaning on roofs or walls, as well as painting for furniture. There are three types, including 21 cases, of the distances between city pairs on the surface of a cuboid. Thus, the calculating the minimum distance methods are introduced in this paper by expanding and flipping the alternative faces of the cuboid. And then a new ant colony optimization-based method to solve the travelling salesman problems on the surfaces of a cuboid is presented and is tested on several TSPLIB benchmarks and some random point sets. Experimental results show that the proposed method is feasible and effective.","PeriodicalId":431294,"journal":{"name":"2010 Second Pacific-Asia Conference on Circuits, Communications and System","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second Pacific-Asia Conference on Circuits, Communications and System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACCS.2010.5626607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Path planning on the surfaces of a cuboid is widespread in engineering applications. It has been employed in many areas, such as network routing, the emergency rescuing upon high-rise buildings, wall-climbing robots picking and placing on a box-shaped objects, a large scale cleaning on roofs or walls, as well as painting for furniture. There are three types, including 21 cases, of the distances between city pairs on the surface of a cuboid. Thus, the calculating the minimum distance methods are introduced in this paper by expanding and flipping the alternative faces of the cuboid. And then a new ant colony optimization-based method to solve the travelling salesman problems on the surfaces of a cuboid is presented and is tested on several TSPLIB benchmarks and some random point sets. Experimental results show that the proposed method is feasible and effective.
长方体上路径规划的蚁群优化方法
长方体表面的路径规划在工程中有着广泛的应用。网络路由、高层建筑的紧急救援、爬墙机器人对盒子状物体的拾取和放置、屋顶或墙壁的大规模清洁、家具的喷漆等领域都有应用。长方体表面上城市对之间的距离有三种类型,包括21种情况。因此,本文介绍了通过展开和翻转长方体的可选面来计算最小距离的方法。在此基础上,提出了一种新的基于蚁群优化的求解长方体表面上的旅行商问题的方法,并在多个TSPLIB基准测试和一些随机点集上进行了测试。实验结果表明,该方法是可行和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信