Measurement and analysis of gate-induced drain leakage in short-channel strained silicon germanium-on-insulator pMOS FinFETs

K. Balakrishnan, P. Hashemi, J. Ott, E. Leobandung, Dae-gyu Park
{"title":"Measurement and analysis of gate-induced drain leakage in short-channel strained silicon germanium-on-insulator pMOS FinFETs","authors":"K. Balakrishnan, P. Hashemi, J. Ott, E. Leobandung, Dae-gyu Park","doi":"10.1109/DRC.2014.6872383","DOIUrl":null,"url":null,"abstract":"Strained silicon germanium (s-SiGe) pMOS finFETs have proven benefits over silicon p-MOSFETs due to their superior transport properties which is attributed to uniaxial stress-induced lower hole effective mass [1-2]. However, the narrower bandgap of SiGe compared to silicon leads to an increase in band-to-band tunneling, which results in higher gate-induced drain leakage (GIDL). Previous work has focused on understanding long-channel GIDL for planar buried-channel s-SiGe pFETs with Si cap and ion-implanted source/drain [3,4]. In this work, for the first time, we investigate the short channel GIDL characteristics of surface-channel strained-Si1-xGex (x=0.27 and 0.5) p-MOSFETs in a finFET architecture using a Si-cap-free surface passivation and ion implant-free raised S/D process. We show devices having a minimum GIDL current of 1nA/um for x=0.27 and 20nA/um for x=0.5 at an operating voltage of VDD=0.8V and an operating temperature of 50°C. In addition, temperature-dependent leakage current measurements demonstrate that the GIDL caused by band-to-band tunneling (BTBT) is the dominant leakage mechanism as compared to trap-assisted tunneling (TAT) for both cases.","PeriodicalId":293780,"journal":{"name":"72nd Device Research Conference","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"72nd Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2014.6872383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Strained silicon germanium (s-SiGe) pMOS finFETs have proven benefits over silicon p-MOSFETs due to their superior transport properties which is attributed to uniaxial stress-induced lower hole effective mass [1-2]. However, the narrower bandgap of SiGe compared to silicon leads to an increase in band-to-band tunneling, which results in higher gate-induced drain leakage (GIDL). Previous work has focused on understanding long-channel GIDL for planar buried-channel s-SiGe pFETs with Si cap and ion-implanted source/drain [3,4]. In this work, for the first time, we investigate the short channel GIDL characteristics of surface-channel strained-Si1-xGex (x=0.27 and 0.5) p-MOSFETs in a finFET architecture using a Si-cap-free surface passivation and ion implant-free raised S/D process. We show devices having a minimum GIDL current of 1nA/um for x=0.27 and 20nA/um for x=0.5 at an operating voltage of VDD=0.8V and an operating temperature of 50°C. In addition, temperature-dependent leakage current measurements demonstrate that the GIDL caused by band-to-band tunneling (BTBT) is the dominant leakage mechanism as compared to trap-assisted tunneling (TAT) for both cases.
短通道应变绝缘子上硅锗pMOS finfet栅极感应漏极测量与分析
应变硅锗(s-SiGe) pMOS finfet已被证明优于硅p- mosfet,因为它们具有优越的输运特性,这归因于单轴应力诱导的低空穴有效质量[1-2]。然而,与硅相比,SiGe更窄的带隙导致带间隧穿增加,从而导致更高的栅极诱发漏极(GIDL)。先前的工作主要集中在理解具有Si帽和离子注入源/漏极的平面埋沟道s-SiGe pfet的长沟道GIDL[3,4]。在这项工作中,我们首次研究了表面通道应变si1 - xgex (x=0.27和0.5)p- mosfet在finFET结构中的短沟道GIDL特性,采用无si帽表面钝化和无离子注入的上升S/D工艺。我们展示了在工作电压VDD=0.8V和工作温度50°C下,当x=0.27和x=0.5时,器件的最小GIDL电流分别为1nA/um和20nA/um。此外,与温度相关的泄漏电流测量表明,在两种情况下,与陷阱辅助隧道(TAT)相比,由带对带隧道(tbbt)引起的GIDL是主要的泄漏机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信