K. Balakrishnan, P. Hashemi, J. Ott, E. Leobandung, Dae-gyu Park
{"title":"Measurement and analysis of gate-induced drain leakage in short-channel strained silicon germanium-on-insulator pMOS FinFETs","authors":"K. Balakrishnan, P. Hashemi, J. Ott, E. Leobandung, Dae-gyu Park","doi":"10.1109/DRC.2014.6872383","DOIUrl":null,"url":null,"abstract":"Strained silicon germanium (s-SiGe) pMOS finFETs have proven benefits over silicon p-MOSFETs due to their superior transport properties which is attributed to uniaxial stress-induced lower hole effective mass [1-2]. However, the narrower bandgap of SiGe compared to silicon leads to an increase in band-to-band tunneling, which results in higher gate-induced drain leakage (GIDL). Previous work has focused on understanding long-channel GIDL for planar buried-channel s-SiGe pFETs with Si cap and ion-implanted source/drain [3,4]. In this work, for the first time, we investigate the short channel GIDL characteristics of surface-channel strained-Si1-xGex (x=0.27 and 0.5) p-MOSFETs in a finFET architecture using a Si-cap-free surface passivation and ion implant-free raised S/D process. We show devices having a minimum GIDL current of 1nA/um for x=0.27 and 20nA/um for x=0.5 at an operating voltage of VDD=0.8V and an operating temperature of 50°C. In addition, temperature-dependent leakage current measurements demonstrate that the GIDL caused by band-to-band tunneling (BTBT) is the dominant leakage mechanism as compared to trap-assisted tunneling (TAT) for both cases.","PeriodicalId":293780,"journal":{"name":"72nd Device Research Conference","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"72nd Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2014.6872383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Strained silicon germanium (s-SiGe) pMOS finFETs have proven benefits over silicon p-MOSFETs due to their superior transport properties which is attributed to uniaxial stress-induced lower hole effective mass [1-2]. However, the narrower bandgap of SiGe compared to silicon leads to an increase in band-to-band tunneling, which results in higher gate-induced drain leakage (GIDL). Previous work has focused on understanding long-channel GIDL for planar buried-channel s-SiGe pFETs with Si cap and ion-implanted source/drain [3,4]. In this work, for the first time, we investigate the short channel GIDL characteristics of surface-channel strained-Si1-xGex (x=0.27 and 0.5) p-MOSFETs in a finFET architecture using a Si-cap-free surface passivation and ion implant-free raised S/D process. We show devices having a minimum GIDL current of 1nA/um for x=0.27 and 20nA/um for x=0.5 at an operating voltage of VDD=0.8V and an operating temperature of 50°C. In addition, temperature-dependent leakage current measurements demonstrate that the GIDL caused by band-to-band tunneling (BTBT) is the dominant leakage mechanism as compared to trap-assisted tunneling (TAT) for both cases.