{"title":"A Bio-Inspired Model of Navigation in a Multi-Chamber Maze","authors":"M. Bureš, M. Jiřina","doi":"10.1109/ICCCYB.2006.305712","DOIUrl":null,"url":null,"abstract":"We present a model of spatial memory inspired by rodent hippocampus. Hippocampus is a part of brain involved in spatial orientation. The model provides a robust and efficient method of storing several navigational maps in a single attractor neural (Hopfield-like) network. It models such phenomena as place cells, long-term potentiation, long-term depression, path integration, inhibitory interneurons etc. Structure of the model conforms to functional schema of hippocampal formation. In order to validate the model we've developed a spatial task within a maze of several chambers. The robot has to follow a complex trajectory passing gateways and avoiding barriers. The algorithm could provide a potential foundation for a future robotic use.","PeriodicalId":160588,"journal":{"name":"2006 IEEE International Conference on Computational Cybernetics","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Computational Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCYB.2006.305712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present a model of spatial memory inspired by rodent hippocampus. Hippocampus is a part of brain involved in spatial orientation. The model provides a robust and efficient method of storing several navigational maps in a single attractor neural (Hopfield-like) network. It models such phenomena as place cells, long-term potentiation, long-term depression, path integration, inhibitory interneurons etc. Structure of the model conforms to functional schema of hippocampal formation. In order to validate the model we've developed a spatial task within a maze of several chambers. The robot has to follow a complex trajectory passing gateways and avoiding barriers. The algorithm could provide a potential foundation for a future robotic use.