Large-scale Optimized Searching for Cruise Itinerary Scheduling on the Cloud

M. Carillo, Matteo D'Auria, Flavio Serrapica, Carmine Spagnuolo, C. Caligaris, Marcello Fabiano
{"title":"Large-scale Optimized Searching for Cruise Itinerary Scheduling on the Cloud","authors":"M. Carillo, Matteo D'Auria, Flavio Serrapica, Carmine Spagnuolo, C. Caligaris, Marcello Fabiano","doi":"10.1109/ICOA.2019.8727704","DOIUrl":null,"url":null,"abstract":"We consider the Cruise Itinerary Schedule Design (CISD) problem, which consists in identifying a cruise itinerary in order to optimize the payoff of a cruising company. To deal with this problem we present an optimization strategy based on a parameters optimization process. We exploits the Simulation exploration and Optimization Framework for the cloud (SOF) for building our computing intensive process on a cloud computing infrastructure. The optimization process is based on a heuristic tabu-search strategy, which computes and evaluates the cruise schedule and a genetic algorithm that optimizes the parameters of the heuristic search. We have evaluated the proposed solution in terms of quality as well as the scalability/cost efficiency on the cloud infrastructure Amazon Web Services.","PeriodicalId":109940,"journal":{"name":"2019 5th International Conference on Optimization and Applications (ICOA)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA.2019.8727704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider the Cruise Itinerary Schedule Design (CISD) problem, which consists in identifying a cruise itinerary in order to optimize the payoff of a cruising company. To deal with this problem we present an optimization strategy based on a parameters optimization process. We exploits the Simulation exploration and Optimization Framework for the cloud (SOF) for building our computing intensive process on a cloud computing infrastructure. The optimization process is based on a heuristic tabu-search strategy, which computes and evaluates the cruise schedule and a genetic algorithm that optimizes the parameters of the heuristic search. We have evaluated the proposed solution in terms of quality as well as the scalability/cost efficiency on the cloud infrastructure Amazon Web Services.
基于云的邮轮行程调度大规模优化搜索
本文研究了邮轮行程计划设计问题,该问题包括确定邮轮行程以优化邮轮公司的收益。为了解决这一问题,我们提出了一种基于参数优化过程的优化策略。我们利用模拟探索和优化框架(SOF)在云计算基础设施上构建我们的计算密集型流程。优化过程基于启发式禁忌搜索策略和遗传算法,启发式禁忌搜索策略计算和评估巡航计划,遗传算法优化启发式搜索参数。我们已经在Amazon Web Services的云基础设施的质量和可伸缩性/成本效率方面评估了建议的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信