New autoregressive model order selection criterion using same-realization predictions

S. Khorshidi, M. Karimi, A. Nematollahi
{"title":"New autoregressive model order selection criterion using same-realization predictions","authors":"S. Khorshidi, M. Karimi, A. Nematollahi","doi":"10.1109/IRANIANCEE.2010.5507086","DOIUrl":null,"url":null,"abstract":"The final prediction error (FPE) criterion is an asymptotic estimate of the prediction error that is used for autoregressive (AR) model order selection. In this paper, we derive a new theoretical estimate of the prediction error for the same-realization predictions. This estimate is derived for the case that the Least-Squares-Forward (LSF) method (the covariance method) is used as the AR parameter estimation method. This result is used for obtaining a new version of the AR order selection criterion FPE in the finite sample case. The performance of this criterion is compared with that of the conventional FPE criterion using simulated data. The results of this comparison show that the performance of the proposed criterion is better than FPE.","PeriodicalId":282587,"journal":{"name":"2010 18th Iranian Conference on Electrical Engineering","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th Iranian Conference on Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2010.5507086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The final prediction error (FPE) criterion is an asymptotic estimate of the prediction error that is used for autoregressive (AR) model order selection. In this paper, we derive a new theoretical estimate of the prediction error for the same-realization predictions. This estimate is derived for the case that the Least-Squares-Forward (LSF) method (the covariance method) is used as the AR parameter estimation method. This result is used for obtaining a new version of the AR order selection criterion FPE in the finite sample case. The performance of this criterion is compared with that of the conventional FPE criterion using simulated data. The results of this comparison show that the performance of the proposed criterion is better than FPE.
使用相同实现预测的新自回归模型顺序选择准则
最终预测误差(FPE)准则是用于自回归(AR)模型阶数选择的预测误差的渐近估计。本文给出了一种新的预测误差的理论估计方法。这个估计是在使用最小二乘前向(LSF)方法(协方差法)作为AR参数估计方法的情况下得出的。该结果用于得到有限样本情况下新版本的AR顺序选择准则FPE。利用仿真数据将该准则与传统FPE准则的性能进行了比较。对比结果表明,该准则的性能优于FPE准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信