Workload Alleviation Scheduling Framework to Alleviate Negative Performance Impact of Intermediate Data Skew in Small-Scale MapReduce Cloud

Tzu-Chi Huang, Kuo-Chih Chu, Jiahuei Lin, Guo-Hao Huang, C. Shieh
{"title":"Workload Alleviation Scheduling Framework to Alleviate Negative Performance Impact of Intermediate Data Skew in Small-Scale MapReduce Cloud","authors":"Tzu-Chi Huang, Kuo-Chih Chu, Jiahuei Lin, Guo-Hao Huang, C. Shieh","doi":"10.1109/ICSSE.2018.8520003","DOIUrl":null,"url":null,"abstract":"A MapReduce cloud becomes the essential platform in the cloud computing infrastructure today. Because applications may process input data with different algorithms and logics to produce intermediate data, a MapReduce cloud may suffer intermediate data skew by unevenly distributing intermediate data among nodes at run time. When intermediate data skew happens, a MapReduce cloud not only idles nodes to waste computation resources but also prolongs the application execution progress to hurt user experiences in cloud computing. Instead of the existing solutions that assume many available idle nodes and use computation resources in a loose way, a MapReduce cloud can use the Workload Alleviation Scheduling Framework (W ASF) proposed in this paper to alleviate the negative performance impact of intermediate data skew in a small-scale MapReduce cloud by smartly utilizing computation resources. Besides, a MapReduce cloud is verified with popular applications in experiments to have the outstanding performance improvement with W ASF when intermediate data skew happens.","PeriodicalId":431387,"journal":{"name":"2018 International Conference on System Science and Engineering (ICSSE)","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE.2018.8520003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A MapReduce cloud becomes the essential platform in the cloud computing infrastructure today. Because applications may process input data with different algorithms and logics to produce intermediate data, a MapReduce cloud may suffer intermediate data skew by unevenly distributing intermediate data among nodes at run time. When intermediate data skew happens, a MapReduce cloud not only idles nodes to waste computation resources but also prolongs the application execution progress to hurt user experiences in cloud computing. Instead of the existing solutions that assume many available idle nodes and use computation resources in a loose way, a MapReduce cloud can use the Workload Alleviation Scheduling Framework (W ASF) proposed in this paper to alleviate the negative performance impact of intermediate data skew in a small-scale MapReduce cloud by smartly utilizing computation resources. Besides, a MapReduce cloud is verified with popular applications in experiments to have the outstanding performance improvement with W ASF when intermediate data skew happens.
缓解小规模MapReduce云中间数据倾斜对性能影响的工作量缓解调度框架
MapReduce云成为当今云计算基础设施中必不可少的平台。由于应用程序可能使用不同的算法和逻辑处理输入数据以生成中间数据,因此MapReduce云可能会在运行时在节点之间不均匀地分布中间数据,从而导致中间数据倾斜。当中间数据发生倾斜时,MapReduce云不仅会使节点闲置,浪费计算资源,还会延长应用程序的执行进度,影响云计算的用户体验。MapReduce云可以利用本文提出的负载缓解调度框架(Workload mitigation Scheduling Framework, wasf),巧妙地利用计算资源,来缓解小规模MapReduce云中中间数据倾斜对性能的负面影响,而不是现有的解决方案假设许多可用的空闲节点,松散地使用计算资源。此外,在实验中,用流行的应用验证了MapReduce云在发生中间数据倾斜时使用W ASF具有显著的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信