ALTICS: an advanced timing analysis system for VLSI

H. Yamauchi, H. Sakuma, Y. Fujinami, K. Takamizawa
{"title":"ALTICS: an advanced timing analysis system for VLSI","authors":"H. Yamauchi, H. Sakuma, Y. Fujinami, K. Takamizawa","doi":"10.1109/VLSIC.1989.1037467","DOIUrl":null,"url":null,"abstract":"Timing verification is one of the most difficult tasks In logic LSI designing. For example, in designing ASICs using automatic layout. despite the dispersion of wiring length has to be considered in clocking skew or setup/hold verification before the Layout. logic simulator cannot deal with such kinds of problems. and has a shortcoming that it can verify only those which can be activated by a given test pattern. The path analysis [I1 C21 Is another approach, however, i t has a wssibllity to detect the paths that cannot be activated and is only avallable for SimPIY smchronized circuits. Therefor, any exlsting CAD twls cannot verify the setup/hold constrafnts accurately. To overcome these problem we have developed a new timing analysis system, called ALTiCS. Thls system uses a new path analysis method. I.e., through the estlmation of logical behavlors. it can eliminate the paths that cannot be activated. Precise backward-trace for clock distribution circult relaxes the restriction on smchronlzation. Combination of two optimized Path trace realizes a setuP/hoid veriflcation within a practically acceptable mmputatlon time.","PeriodicalId":136228,"journal":{"name":"Symposium 1989 on VLSI Circuits","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium 1989 on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.1989.1037467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Timing verification is one of the most difficult tasks In logic LSI designing. For example, in designing ASICs using automatic layout. despite the dispersion of wiring length has to be considered in clocking skew or setup/hold verification before the Layout. logic simulator cannot deal with such kinds of problems. and has a shortcoming that it can verify only those which can be activated by a given test pattern. The path analysis [I1 C21 Is another approach, however, i t has a wssibllity to detect the paths that cannot be activated and is only avallable for SimPIY smchronized circuits. Therefor, any exlsting CAD twls cannot verify the setup/hold constrafnts accurately. To overcome these problem we have developed a new timing analysis system, called ALTiCS. Thls system uses a new path analysis method. I.e., through the estlmation of logical behavlors. it can eliminate the paths that cannot be activated. Precise backward-trace for clock distribution circult relaxes the restriction on smchronlzation. Combination of two optimized Path trace realizes a setuP/hoid veriflcation within a practically acceptable mmputatlon time.
ALTICS:一种先进的VLSI时序分析系统
时序验证是逻辑大规模集成电路设计中最困难的任务之一。例如,在设计asic时使用自动布局。尽管布线长度分散,但在布局之前必须考虑时钟倾斜或设置/保持验证。逻辑模拟器无法处理这类问题。它有一个缺点,即它只能验证那些可以由给定的测试模式激活的。然而,路径分析[I1 C21]是另一种方法,它有可能检测到无法激活的路径,并且仅适用于SimPIY同步电路。因此,任何现有的CAD工具都不能准确地验证设置/保持构造。为了克服这些问题,我们开发了一种新的时序分析系统,称为ALTiCS。本系统采用了一种新的路径分析方法。即,通过对逻辑行为的估计。它可以消除无法激活的路径。精确的时钟分配回路反向跟踪,放宽了同步的限制。两个优化路径跟踪的组合实现了在实际可接受的计算时间内的setuP/hoid验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信