Pantazis Deligiannis, A. Donaldson, J. Ketema, A. Lal, Paul Thomson
{"title":"Asynchronous programming, analysis and testing with state machines","authors":"Pantazis Deligiannis, A. Donaldson, J. Ketema, A. Lal, Paul Thomson","doi":"10.1145/2737924.2737996","DOIUrl":null,"url":null,"abstract":"Programming efficient asynchronous systems is challenging because it can often be hard to express the design declaratively, or to defend against data races and interleaving-dependent assertion violations. Previous work has only addressed these challenges in isolation, by either designing a new declarative language, a new data race detection tool or a new testing technique. We present P#, a language for high-reliability asynchronous programming co-designed with a static data race analysis and systematic concurrency testing infrastructure. We describe our experience using P# to write several distributed protocols and port an industrial-scale system internal to Microsoft, showing that the combined techniques, by leveraging the design of P#, are effective in finding bugs.","PeriodicalId":104101,"journal":{"name":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2737924.2737996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
Programming efficient asynchronous systems is challenging because it can often be hard to express the design declaratively, or to defend against data races and interleaving-dependent assertion violations. Previous work has only addressed these challenges in isolation, by either designing a new declarative language, a new data race detection tool or a new testing technique. We present P#, a language for high-reliability asynchronous programming co-designed with a static data race analysis and systematic concurrency testing infrastructure. We describe our experience using P# to write several distributed protocols and port an industrial-scale system internal to Microsoft, showing that the combined techniques, by leveraging the design of P#, are effective in finding bugs.