On entire functions of exponential type

S. Shah, W. Sisarcick
{"title":"On entire functions of exponential type","authors":"S. Shah, W. Sisarcick","doi":"10.6028/JRES.075B.004","DOIUrl":null,"url":null,"abstract":"Le t J be a n en tire fun c ti o n a nd le t p. \"\" 1 and 1(1 , r)= {f:~ 1 f 11)(re iO) I \"dO} 1/\". for a U s uffic ie ntly la rge r, the n J is of ex pone nti a l type not exceeding. {2 log (l-t. ~) + 1 + log (2N) !} .. If thi s co ndition is re place d by re lated co nditi ons, th e n a lso is of expo ne nti a l t ype. An e ntire fun c tion f(z) is said to be of bounde d ind ex if and only if th ere exi sts a non-negative integer N (ind e pe nde nt of z) s uch thatO\"'j \",N j!-k! (1.1) for all k and all z, and the smallest s uc h integer N is calle d the index off(z) ([1], [4] , [5]).1 It is known that a function of bounde d inde x N is of ex ponenti al type not exceedin g N+ 1 [6] but that a function of expon e ntial type need not be of bounde d inde x. In fac t any e ntire fun c tion havin g ze ros of arbitrarily large multipli city is not of bound e d index and th ere exist fun c tion s with simple zeros and of exponential type whic h are not of bounded index [8]. In a recent paper [2] Fred Gross considers interesting variations of condition (1.1) and proves the following THEOREM A: Let f be entire and C a positive constant. If there exists a positive integer N such that for k=O, 1,. . , N, f satisfies one ofthefollowing,for all z with l z I sufficiently large:","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1971-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.075B.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Le t J be a n en tire fun c ti o n a nd le t p. "" 1 and 1(1 , r)= {f:~ 1 f 11)(re iO) I "dO} 1/". for a U s uffic ie ntly la rge r, the n J is of ex pone nti a l type not exceeding. {2 log (l-t. ~) + 1 + log (2N) !} .. If thi s co ndition is re place d by re lated co nditi ons, th e n a lso is of expo ne nti a l t ype. An e ntire fun c tion f(z) is said to be of bounde d ind ex if and only if th ere exi sts a non-negative integer N (ind e pe nde nt of z) s uch thatO"'j ",N j!-k! (1.1) for all k and all z, and the smallest s uc h integer N is calle d the index off(z) ([1], [4] , [5]).1 It is known that a function of bounde d inde x N is of ex ponenti al type not exceedin g N+ 1 [6] but that a function of expon e ntial type need not be of bounde d inde x. In fac t any e ntire fun c tion havin g ze ros of arbitrarily large multipli city is not of bound e d index and th ere exist fun c tion s with simple zeros and of exponential type whic h are not of bounded index [8]. In a recent paper [2] Fred Gross considers interesting variations of condition (1.1) and proves the following THEOREM A: Let f be entire and C a positive constant. If there exists a positive integer N such that for k=O, 1,. . , N, f satisfies one ofthefollowing,for all z with l z I sufficiently large:
关于指数型的整个函数
让我成为一个快乐的人,让我成为一个快乐的人。”“1和1 (1 r) = {f f: 1 ~ 11)(重新iO)我“做}1 /”。对于一个美国人来说,如果一个人的流量小于1,那么这个人的流量就不会超过1。{2 log (l-t)~) + 1 + log (2N)} ..如果将此条件替换为相关的条件,则该条件也将是一个新的类型。一个完整的函数f(z)是有界的,当且仅当存在一个非负整数N(包括z的N次方)满足to "'j ",N j!-k!(1.1)对于所有k和所有z,最小的s (h整数N)称为d索引off(z) ([1], [4], [5]).1众所周知,bounde d印度x的函数N ponenti al交货类型不是exceedin g N + 1[6],但表示的函数e ntial bounde d印度x的类型不需要。在fac t e ntire有趣c任意大的构造每天g泽ros multipli城市不是绑定e d指数和th之前存在有趣的c与简单的0年代和指数型这不是有界指数[8]。在最近的一篇论文[2]中,Fred Gross考虑了条件(1.1)的有趣变化,并证明了以下定理a:设f为整,C为正常数。如果存在正整数N,使得k= 0, 1,。, N, f满足下列条件之一,对于所有z,且lzi足够大:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信